References
Allouche, O., Tsoar, A., Kadmon, R., 2006. Assessing the accuracy of species distribution models: Prevalence, kappa and the true skill statistic (TSS). Journal of Applied Ecology 43, 1223–1232. https://doi.org/10.1111/j.1365-2664.2006.01214.x
Auniņš, A. (red.), 2013. Eiropas savienības aizsargājamie biotopi latvijā. Noteikšanas rokasgrāmata. 2. Precizēts izdevums. Latvijas Dabas fonds, Vides aizsardzības un reģionālās attīstības ministrija, Rīga, Latvija.
Auniņš, A., Mārdega, I., 2020. Dienas putnu fona monitorings. Gala atskaite par 2020. gadu. Latvijas Ornitoloģijas biedrība, Rīga, Latvija.
Avotins, A., Avotins, A., Ķerus, V., Auniņš, A., 2023. Numerical response of owls to the dampening of small mammal population cycles in Latvia. Life 13, 572. https://doi.org/10.3390/life13020572
Avotins, A., Kerus, V., Aunins, A., 2022. National scale habitat suitability analysis to evaluate and improve conservation areas for a mature forest specialist species. Global Ecology and Conservation 38, e02218. https://doi.org/10.1016/j.gecco.2022.e02218
Avotiņš, A., 2019a. Apodziņa Glaucidium passerinum, bikšainā apoga Aegolius funereus, meža pūces Strix aluco, urālpūces Strix uralensis, ausainās pūces Asio otus un ūpja Bubo bubo aizsardzības plāns. Latvijas Ornitoloģijas biedrība, Rīga, Latvija.
Avotiņš, A., 2019b. Aizsargājamās dabas teritorijas, mežsaimniecības aprobežojumi un Aichi biodaudzveidības mērķi mežos: Trūkumi dabas teritorijās un iespējas valsts līmeņa plānošanā ar dzīvotņu piemērotības modelēšanu, LU 77th International scientific conference.
Avotiņš, A., Auniņš, A., Stīpniece, A., Ķerus, V., 2024. Little and a lot of data, both with their own challenges: Approaches used for the red listing of birds in latvia, in: Butkauskas, D., Čekstere-Muižniece, G., Degtjarenko, P., Jankevica, L., Jansson, N., Ķerus, V., Pilāts, V., Telnov, D. (Eds.), Safeguarding Biodiversity: Red Lists and Beyond. Institute of Biology, Faculty of Medicine; Life Sciences, University of Latvia, p. 14.
Backstrom, L.J., Callaghan, C.T., Wortington, H., Fuller, R.A., Jonston, A., 2024. Estimating sampling biases in citizen science datasets. Ibis 1–15. https://doi.org/10.1111/ibi.13343
Bahn, V., Mcgill, B.J., 2007. Can niche-based based distribution models outperform spatial interpolation? Global Ecology and Biogeography 16, 733–742. https://doi.org/10.1111/j.1466-8238.2007.00331.x
Beale, C.M., Lennon, J.J., Gimona, A., 2008. Opening the climate envelope reveals no macroscale associations with climate in european birds. PNAS 105, 14908–14912. https://doi.org/10.1073/pnas.080350610
Bergmanis, M., Priednieks, J., Avotiņš, A., Priedniece, I., 2021. Mazā dzeņa Dryobates minor, vidējā dzeņa Leiopicus medius, baltmugurdzeņa Dendrocopos leucotos, dižraibā dzeņa Dendrocopos major, trīspirkstu dzeņa Picoides tridactylus, melnās dzilnas Dryocopus martius un pelēkās dzilnas Picus canus aizsardzības plāns. Latvijas Ornitoloģijas biedrība, Rīga, Latvija.
Björklund, H., Parkkinen, A., Hakkari, T., Heikkinen, R.K., Virkkala, R., Lensu, A., 2020. Predicting valuable forest habitats using an indicator species for biodiversity. Biological Conservation 249, 108682. https://doi.org/10.1016/j.biocon.2020.108682
Brown, C.F., Brumby, S.P., Guzder-Williams, B., Birch, T., Hyde, S.B., Mazzariello, J., Czerwinski, W., Pasquarella, V.J., Haertel, R., Ilyushchenko, S., Schwehr, K., Weisse, M., Stolle, F., Hanson, C., Guinan, O., Moore, R., Tait, A.M., 2022. Dynamic World, Near real-time global 10 m land use land cover mapping. Scientific Data 9, 251. https://doi.org/10.1038/s41597-022-01307-4
Celmiņš, A., 2024. Putni.lv.
Chapman, D.S., 2010. Weak climatic associations among britishplant distributions. Global Ecology and Biogeography 19, 831–841. https://doi.org/10.1111/j.1466-8238.2010.00561.x
Cramp, S., Brooks, D.J., Dunn, E., Gillmor, R., Hall-Craggs, J., Hollom, P.A.D., Nicholson, E.M., Ogilvie, M.A., Roselaar, C.S., Sellar, P.J., Simmons, K.E.L., Snow, D.W., Vincent, D., Voous, K.H., Wallace, D.I.M., Wilson, M.G., 1992. Handbook of the birds of Europe, the Middle East and North Africa: Volume 6 - Warblers. Oxford University Press, Hong Kong.
Cramp, S., Brooks, D.J., Dunn, E., Gillmor, R., Hall-Craggs, J., Hollom, P.A.D., Nicholson, E.M., Ogilvie, M.A., Roselaar, C.S., Sellar, P.J., Simmons, K.E.L., Voous, K.H., Wallace, D.I.M., Wilson, M.G., 1988. Handbook of the birds of Europe, the Middle East and North Africa: Volume 5 - Tyrant Flycatchers to Thrushes. Oxford University Press, Hong Kong.
Cramp, S., Brooks, D.J., Dunn, E., Gillmor, R., Hollom, P.A.D., Hudson, R., Nicholson, E.M., Ogilvie, M.A., Olney, P.J.S., Roselaar, C.S., Simmons, K.E.L., Voous, K.H., Wallace, D.I.M., Wattel, J., Wilson, M.G., 1994a. Handbook of the birds of Europe, the Middle East and North Africa: Volume 4 - Terns to Woodpeckers. Oxford University Press, Hong Kong.
Cramp, S., Perrins, C.M., Brooks, D.J., Dunn, E., Gillmor, R., Hall-Craggs, J., Hillcoat, B., Hollom, P.A.D., Nicholson, E.M., Roselaar, C.S., Seale, W.T.C., Sellar, P.J., Simmons, K.E.L., Snow, D.W., Vincent, D., Voous, K.H., Wallace, D.I.M., Wilson, M.G., 1994b. Handbook of the birds of Europe, the Middle East and North Africa: Volume 8 - Crows to Finches. Oxford University Press, Hong Kong.
Cramp, S., Perrins, C.M., Brooks, D.J., Dunn, E., Gillmor, R., Hall-Craggs, J., Hillcoat, B., Hollom, P.A.D., Nicholson, E.M., Roselaar, C.S., Seale, W.T.C., Sellar, P.J., Simmons, K.E.L., Snow, D.W., Vincent, D., Voous, K.H., Wallace, D.I.M., Wilson, M.G., 1994c. Handbook of the birds of Europe, the Middle East and North Africa: Volume 9 - Buntings to New World Warblers. Oxford University Press, Hong Kong.
Cramp, S., Perrins, C.M., Brooks, D.J., Dunn, E., Gillmor, R., Hall-Craggs, J., Hillcoat, B., Hollom, P.A.D., Nicholson, E.M., Roselaar, C.S., Seale, W.T.C., Sellar, P.J., Simmons, K.E.L., Snow, D.W., Vincent, D., Voous, K.H., Wallace, D.I.M., Wilson, M.G., 1993. Handbook of the birds of Europe, the Middle East and North Africa: Volume 7 - Flycatchers to Shrikes. Oxford University Press, Hong Kong.
Cramp, S., Simmons, K.E.L., Brooks, D.J., Collar, N.J., Dunn, E., Gillmor, R., Hollom, P.A.D., Hudson, R., Nicholson, E.M., Ogilvie, M.A., Olney, P.J.S., Roselaar, C.S., Voous, K.H., Wallace, D.I.M., Wattel, J., Wilson, M.G., 1990. Handbook of the birds of Europe, the Middle East and North Africa: Volume 3 - Waders to Gulls. Oxford University Press, Hong Kong.
Cramp, S., Simmons, K.E.L., Ferguson-Lees, I.J., Gillmor, R., Hollom, P.A.D., Hudson, R., Nicholson, E.M., Ogilvie, M.A., Olney, P.J.S., Voous, K.H., Wattel, J., 1994d. Handbook of the birds of Europe, the Middle East and North Africa: Volume 1 - Ostrich to Ducks. Oxford University Press, New York, United States.
Cramp, S., Simmons, K.E.L., Gillmor, R., Hollom, P.A.D., Hudson, R., Nicholson, E.M., Ogilvie, M.A., Olney, P.J.S., Roselaar, P.S., Voous, K.H., Wallace, D.I.M., Wattel, J., 1982. Handbook of the birds of Europe, the Middle East and North Africa: Volume 2 - Hawks to Bustards. Oxford University Press, Hong Kong.
Dorazio, R.M., 2014. Accounting for imperfect detection and survey bias in statistical analysis of presence-only data. Global Ecology and Biogeography 23, 1472–1484. https://doi.org/10.1111/geb.12216
Dormann, C.F., Schymanski, S.J., Cabral, J., Chuine, I., Graham, C., Hartig, F., Kearney, M., Morin, X., Römermann, C., Schröder, B., Singer, A., 2012. Correlation and process in speciesdistribution models: Bridging adichotomy. Journal of Biogeography 39, 2119–2131. https://doi.org/10.1111/j.1365-2699.2011.02659.x
Fletcher, R.J.Jr., Hefley, T.J., Robertson, E.P., Zuckerberg, B., McCellery, R.A., Dorazio, R.M., 2019. A practical guide for combining data to model species distributions. Ecology 100, 1–15. https://doi.org/10.1002/ecy.2710
Fourcade, Y., Besnard, A.G., Secondi, J., 2018. Paintings predict the distribution of species, or the challenge of selecting environmental predictors and evaluation statistics. Global Ecology and Biogeography 27, 245–256. https://doi.org/10.1111/geb.12684
Fourcade, Y., Engler, J.O., Rödder, D., Secondi, J., 2014. Mapping species distributions with MAXENT using a geographically biased sample of presence data: A performance assessment of methods for correcting sampling bias. PLoS ONE 9, 1–13. https://doi.org/10.1371/journal.pone.0097122
Ghassemi, B., Izquierdo-Verdiguier, E., Verhegghen, A., Yordanov, M., Lemoine, G., Martínez, Á.M., Marchi, D.D., Velde, M. van der, Vuolo, F., d’Andrimont, R., 2024. European Union crop map 2022: Earth observation’s 10-meter dive into Europe’s crop tapestry. Scientific Data 11, 1048. https://doi.org/10.1038/s41597-024-03884-y
Gorelick, N., Hancher, M., Dixon, M., Ilyushchenko, S., Thau, D., Moore, R., 2017. Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sensing of Environment 202, 18–27. https://doi.org/10.1016/j.rse.2017.06.031
Guisan, A., Thuiller, W., Zimmermann, N.E., 2017. Habitat suitability and distribution models: With applications in R. Cambridge University Press, Cornwall, UK.
Hansen, M.C., Potapov, P.V., Moore, R., Hancher, M., Turubanova, S.A., Tyukavina, A., Thau, D., Stehman, S.V., Goetz, S.J., Loveland, T.R., Kommareddy, A., Egorov, A., Chini, L., Justice, C.O., Townshend, J.R.G., 2013. High-resolution Global maps of 21st-century forest cover change. Science 342, 850–853. https://doi.org/10.1126/science.1244693
Jamie M. Kass, C.L.B. nad, Anderson, R.P., 2019. A new null model approach to quantify performance and significance for ecological niche models of species distributions. Journal of Biogeography 46, 1101–1111. https://doi.org/10.1111/jbi.13573
Jiménez-Valverde, A., Lobo, J.M., 2007. Threshold criteria for conversion of probability of species presence to either–or presence–absence. Acta Oecologica 31, 361–369. https://doi.org/10.1016/j.actao.2007.02.001
Johnston, A., Moran, N., Musgrove, A., Fink, D., Baillie, S.R., 2020. Estimating species distributions from spatially biased citizen science data. Ecological Modelling 420, 108927. https://doi.org/10.1016/j.ecolmodel.2019.108927
Kass, J.M., Anderson, R.P., Espinosa-Lucas, A., Juárez-Jaimes, V., Martínez-Salas, E., Botello, F., Tavera, G., Flores-Martínez, J.J., Sánchez-Cordero, V., 2020. Biotic predictors with phenological information improve range estimates for migrating monarch butterflies in mexico. Ecography 43, 341–352. https://doi.org/10.1111/ecog.04886
Kass, J.M., Muscarella, R., Galante, P.J., Bohl, C.L., Pinilla-Buitrago, G.E., Boria, R.A., Soley-Guardia, M., Anderson, R.P., 2021. ENMeval 2.0: Redesigned for customizable and reproducible modeling of species’ niches and distributions. Methods in Ecology and Evolution 12, 1602–1608. https://doi.org/10.1111/2041-210X.13628
Kéry, M., Royle, J.A., 2021. Applied hierarchical modeling in ecology: Analysis of distribution, abundance and species richness in r and BUGS. Volume 2: Dynamic and advanced models. Elsevier, London, UK.
Kéry, M., Royle, J.A., 2017. Applied hierarchical modeling in ecology: Analysis of distribution, abundance and species richness in r and BUGS. Volume 1: Prelude and static models. Elsevier, London, UK.
Lārmanis, V. (red.), 2013. Bioloģiski vērtīgo zālāju kartēšanas metodika. Dabas aizsardzības pārvalde, Sigulda, Latvija.
Lipsbergs, J., 2011. Kas notiek ar ūpi Latvijā. Putni Dabā 2011, 6–19.
Lobo, J.M., Jiménez-Valverde, A., Real, R., 2008. AUC: A misleading measure of theperformance of predictive distributionmodels. Global Ecology and Biogeography 17, 145–151. https://doi.org/10.1111/j.1466-8238.2007.00358.x
McElreath, R., 2020. Statistical Rethinking. A Bayesian course with examples in R and Stan. Second edition. CRC Press, Boca Raton, FL.
Meller, K., Björklund, H., Saurola, P., Valkama, J., 2017. Petolintuvuosi 2016, pesimistulokset ja kannankehitykset. Linnut-vuosikirja 2016 16–31.
Mirmazloumi, S.M., Kakooei, M., Mohseni, F., Ghorbanian, A., Amani, M., Crosetto, M., Monserrat, O., 2022. ELULC-10, a 10 m European land use and land cover map using Sentinel and Landsat data in Google Earth Engine. Remote Sensing 14, 3041. https://doi.org/10.3390/rs14133041
Miroslav Dudik, S.J.P. nad, Elith, J., Graham, C.H., Lehmann, A., Leathwick, J., Ferrier, S., 2009. Sample selection bias and presence-only distribution models: Implications for background and pseudo-absence data. Ecological Applications 19, 181–197.
Montgomery, D.C., Peck, E.A., Vining, G.G., 2012. Introduction to Linear Regression Analysis. Fifth edition. Wiley, New Jersey.
Moudrý, V., Bazzichetto, M., Remelgado, R., Devillers, R., Lenoir, J., Mateo, R.G., Lembrechts, J.J., Sillero, N., Lecours, V., Cord, A.F., Barták, V., Balej, P., Rocchini, D., Torresani, M., Arenas-Castro, S., Man, M., Prajzlerová, D., Gdulová, K., Prošek, J., Marchetto, E., Zarzo-Arias, A., Gábor, L., Leroy, F., Martini, M., Malavasi, M., Gatti, R.C., Wild, J., Šímová, P., 2024. Optimising occurrence data in species distribution models: Sample size, positional uncertainty, and sampling bias matter vítězslav. Ecography e07294. https://doi.org/10.1111/ecog.07294
Muscarella, R., Galante, P.J., Soley-Guardia, M., Boria, R.A., Kass, J.M., Uriarte, M., Anderson, R.P., 2014. ENMeval: An R package for conducting spatially independent evaluations and estimating optimal model complexity for MAXENT ecological niche models. Methods in Ecology and Evolution 5, 1198–1205. https://doi.org/10.1111/2041-210X.12261
Naimi, B., Hamm, N. a.s., Groen, T.A., Skidmore, A.K., Toxopeus, A.G., 2014. Where is positional uncertainty a problem for species distribution modelling. Ecography 37, 191–203. https://doi.org/10.1111/j.1600-0587.2013.00205.x
Ogawa, R., Wang, G., Burger, L.W., Strickland, B.K., Davis, J.B., Cunningham, F.L., 2024. Bayesian integrated species distribution models for hierarchical resource selection by a soaring bird. Ecological Informatics 82, 102787. https://doi.org/10.1016/j.ecoinf.2024.102787
Phillips, S., 2021. Maxnet: Fitting ’maxent’ species distribution models with ’glmnet’.
Phillips, S.J., Anderson, R.P., Dudík, M., Schapire, R.E., Blair, M.E., 2017. Opening the black box: An open-source release of maxent. Ecography 40, 887–893. https://doi.org/10.1111/ecog.03049
Phillips, S.J., Anderson, R.P., Schapire, R.E., 2006. Maximum entropy modeling of species geographic distributions. Ecological Modelling 190, 231–259.
Phillips, S.J., Dudik, M., Schapire, R.E., 2004. A Maximum Entropy Approach to Species Distribution Modeling. Proceedings of the Twenty-First International Conference on Machine Learning 655–662.
Radosavljevic, A., Anderson, R.P., 2014. Making better m AXENT models of speciesdistributions: Complexity, overfittingand evaluation. Journal of Biogeography 41, 629–643. https://doi.org/10.1111/jbi.12227
Raes, N., Steege, H. ter, 2007. A null-model for significance testing of presence-only species distribution models. Ecography 30, 727–736. https://doi.org/10.1111/j.2007.0906-7590.05041.x
Roberts, D.R., Bahn, V., Ciuti, S., Boyce, M.S., Elith, J., Guillera-Arroita, G., Hauenstein, S., Lahoz-Monfort, J.J., Schröder, B., Thuiller, W., Warton, D.I., Wintle, B.A., Hartig, F., Dormann, C.F., 2017. Cross-validation strategies for data with temporal, spatial,hierarchical, or phylogenetic structure. Ecography 40, 913–929. https://doi.org/10.1111/ecog.02881
Sabater, J.M., n.d. ERA5-Land hourly data from 1950 to present. Copernicus Climate Change Service (C3S) Climate Data Store (CDS). https://doi.org/10.24381/cds.e2161bac
Scherrer, D., D’Amen, M., Fernandes, R.F., Mateo, R.G., Guisan, A., 2018. How to best threshold and validate stacked species assemblages? Community optimisation might hold the answer. Methods in Ecology and Evolution 2155–2166. https://doi.org/10.1111/2041-210X.13041
Shimada, M., Itoh, T., Motooka, T., Watanabe, M., Shiraishi, T., Thapa, R., Lucas, R., 2013. New global forest/non-forest maps from ALOS PALSAR data (2007–2010). Remote Sensing of Environment 155, 13–31. https://doi.org/10.1016/j.rse.2014.04.014
Soley-Guardia, M., Carnaval, A.C., Anderson, R.P., 2019. Sufficient versus optimal climatic stability during the late quaternary: Using environmental quality to guide phylogeographic inferences in a neotropical montane system. Journal of Mammology 100, 1783–1807. https://doi.org/10.1093/jmammal/gyz162
Velasco, J.A., González-Salazar, C., 2019. Akaike information criterion should not be a “test” of geographical prediction accuracy in ecological niche modelling. Ecological Informatics 51, 25–32. https://doi.org/10.1016/j.ecoinf.2019.02.005
Veloz, S.D., 2009. Spatially autocorrelated sampling falselyinflates measures of accuracy forpresence-only niche models. Journal of Biogeography 36, 2290–2299. https://doi.org/10.1111/j.1365-2699.2009.02174.x
Venter, Z.S., Barton, D.N., Chakraborty, T., Simensen, T., Singh, G., 2022. Global 10 m Land Use Land Cover datasets: A comparison of Dynamic World, World Cover and Esri Land Cover. Remote Sensing 14, 4101. https://doi.org/10.3390/rs14164101
Vignali, S., Barras, A.G., Arlettaz, R., Braunisch, V., 2020. SDMtune: An R package to tune and evaluate species distribution models. Ecology and Evolution 10, 11488–11506. https://doi.org/10.1002/ece3.6786
Wang, L., Liu, H., 2006. An efficient method for identifying and filling surface depressions in digital elevation models for hydrologic analysis and modelling. International Journal of Geographical Information Science 20, 193–213. https://doi.org/10.1080/13658810500433453
Warren, D., Dinnage, R., 2024. ENMTools: Analysis of niche evolution using niche and distribution models.
Warren, D.L., Glor, R.E., Turelli, M., 2010. ENMTools: A toolbox for comparative studies of environmental niche models. Ecography 33, 607–611. https://doi.org/10.1111/j.1600-0587.2009.06142.x
Warren, D.L., Matzke, N.J., Cardillo, M., Baumgartner, J.B., Beaumont, L.J., Turelli, M., Glor, R.E., Huron, N.A., Simões, M., Iglesias, T.L., Piquet, J.C., Dinnage, R., 2021. ENMTools 1.0: An r package for comparative ecological biogeography. Ecography 44, 1–8. https://doi.org/10.1111/ecog.05485
Warren, D.L., Seifert, S.N., 2011. Ecological niche modeling in maxent: The importance of model complexity and the performance of model selection criteria. Ecological Applications 21, 335–342. https://doi.org/10.1890/10-1171.1
Wenger, S.J., Olden, J.D., 2012. Assessing transferability of ecological models: An underappreciated aspect of statistical validation. Methods in Ecology and Evolution 3, 260–267. https://doi.org/10.1111/j.2041-210X.2011.00170.x
Wikle, C.K., Zammit-Mangion, A., Cressie, N., 2019. Spatio-Temporal Statistics with R. Chapman & Hall/CRC, Boca Raton, FL.
Wright, A.N., Hijmans, R.J., Schwartz, M.W., Shaffer, H.B., 2014. Multiple sources of uncertainty affect metrics for ranking conservation risk under climate change. Diversity and Distributions. https://doi.org/10.1111/ddi.12257
Xu, P., Tsendbazar, N.-E., Herold, M., Bruin, S. de, Koopmans, M., Birch, T., Carter, S., Fritz, S., Lesiv, M., Mazur, E., Pickens, A., Potapov, P., Stolle, F., Tyukavina, A., Kerchove, R.V.D., Zanaga, D., 2024. Comparative validation of recent 10 m-resolution global land cover maps. Remote Sensing of Environment 311, 114316. https://doi.org/10.1016/j.rse.2024.114316
Yu, B., Dai, W.W., Li, S., Wu, Z., Wang, J., 2024. A new threshold selection method for species distributionmodels with presence-only data: Extracting the mutation point of the p/e curve by threshold regression. Ecology and evolution 14. https://doi.org/10.1002/ece3.11208
Zuur, A.F., Ieno, E.N., Walker, N.J., Saveliev, A.A., Smith, G.M., 2009. Mixed Effects Models and Extensions in Ecology with R. Springer, New York.