6 Ecogeographical variables
Creation procedures of every EGV.
6.1 Climate_CHELSAv2.1-bio1_cell
filename: Climate_CHELSAv2.1-bio1_cell.tif
layername: egv_1
English name: Mean annual daily mean air temperature (°C) (CHELSA v2.1) within the analysis cell (1 ha)
Latvian name: Vidējā ikdienas gaisa temperatūra (°C) (CHELSA v2.1) analīzes šūnā (1 ha)
Procedure: Directly follows CHELSA v2.1. EGV is prepared with the
workflow egvtools::downscale2egv()
with inverse distance weighted (power = 2)
gap filling and soft smoothing (power = 0.5) over 5 km radius of every cell.
Code
# libs ----
if(!require(egvtools)) {remotes::install_github("aavotins/egvtools"); require(egvtools)}
# job ----
localname="Climate_CHELSAv2.1-bio1_cell.tif"
layername="egv_1"
reading="./Geodata/2024/CHELSA/Climate_CHELSAv2.1-bio1_cell.tif"
df <- downscale2egv(
template_path = "./Templates/TemplateRasters/LV100m_10km.tif",
grid_path = "./Templates/TemplateGrids/tikls1km_sauzeme.parquet",
rawfile_path = reading,
out_path = "./RasterGrids_100m/2024/RAW/",
file_name = localname,
layer_name = layername,
fill_gaps = TRUE,
smooth = TRUE,
smooth_radius_km = 5,
plot_result = TRUE)
print(df)
6.2 Climate_CHELSAv2.1-bio10_cell
filename: Climate_CHELSAv2.1-bio10_cell.tif
layername: egv_2
English name: Mean daily mean air temperatures (°C) of the warmest quarter (CHELSA v2.1) within the analysis cell (1 ha)
Latvian name: Gada siltākā ceturkšņa vidējā gaisa temperatūra (°C) (CHELSA v2.1) analīzes šūnā (1 ha)
Procedure: Directly follows CHELSA v2.1. EGV is prepared with the
workflow egvtools::downscale2egv()
with inverse distance weighted (power = 2)
gap filling and soft smoothing (power = 0.5) over 5 km radius of every cell.
Code
# libs ----
if(!require(egvtools)) {remotes::install_github("aavotins/egvtools"); require(egvtools)}
# job ----
localname="Climate_CHELSAv2.1-bio10_cell.tif"
layername="egv_2"
reading="./Geodata/2024/CHELSA/Climate_CHELSAv2.1-bio10_cell.tif"
df <- downscale2egv(
template_path = "./Templates/TemplateRasters/LV100m_10km.tif",
grid_path = "./Templates/TemplateGrids/tikls1km_sauzeme.parquet",
rawfile_path = reading,
out_path = "./RasterGrids_100m/2024/RAW/",
file_name = localname,
layer_name = layername,
fill_gaps = TRUE,
smooth = TRUE,
smooth_radius_km = 5,
plot_result = TRUE)
print(df)
6.3 Climate_CHELSAv2.1-bio11_cell
filename: Climate_CHELSAv2.1-bio11_cell.tif
layername: egv_3
English name: Mean daily mean air temperatures (°C) of the coldest quarter (CHELSA v2.1) within the analysis cell (1 ha)
Latvian name: Gada aukstākā ceturkšņa vidējā gaisa temperatūra (°C) (CHELSA v2.1) analīzes šūnā (1 ha)
Procedure: Directly follows CHELSA v2.1. EGV is prepared with the
workflow egvtools::downscale2egv()
with inverse distance weighted (power = 2)
gap filling and soft smoothing (power = 0.5) over 5 km radius of every cell.
Code
# libs ----
if(!require(egvtools)) {remotes::install_github("aavotins/egvtools"); require(egvtools)}
# job ----
localname="Climate_CHELSAv2.1-bio11_cell.tif"
layername="egv_3"
reading="./Geodata/2024/CHELSA/Climate_CHELSAv2.1-bio11_cell.tif"
df <- downscale2egv(
template_path = "./Templates/TemplateRasters/LV100m_10km.tif",
grid_path = "./Templates/TemplateGrids/tikls1km_sauzeme.parquet",
rawfile_path = reading,
out_path = "./RasterGrids_100m/2024/RAW/",
file_name = localname,
layer_name = layername,
fill_gaps = TRUE,
smooth = TRUE,
smooth_radius_km = 5,
plot_result = TRUE)
print(df)
6.4 Climate_CHELSAv2.1-bio12_cell
filename: Climate_CHELSAv2.1-bio12_cell.tif
layername: egv_4
English name: Annual precipitation amount (kg m⁻² year⁻¹) (CHELSA v2.1) within the analysis cell (1 ha)
Latvian name: Gada nokrišņu daudzums (kg m⁻² gadā) (CHELSA v2.1) analīzes šūnā (1 ha)
Procedure: Directly follows CHELSA v2.1. EGV is prepared with the
workflow egvtools::downscale2egv()
with inverse distance weighted (power = 2)
gap filling and soft smoothing (power = 0.5) over 5 km radius of every cell.
Code
# libs ----
if(!require(egvtools)) {remotes::install_github("aavotins/egvtools"); require(egvtools)}
# job ----
localname="Climate_CHELSAv2.1-bio12_cell.tif"
layername="egv_4"
reading="./Geodata/2024/CHELSA/Climate_CHELSAv2.1-bio12_cell.tif"
df <- downscale2egv(
template_path = "./Templates/TemplateRasters/LV100m_10km.tif",
grid_path = "./Templates/TemplateGrids/tikls1km_sauzeme.parquet",
rawfile_path = reading,
out_path = "./RasterGrids_100m/2024/RAW/",
file_name = localname,
layer_name = layername,
fill_gaps = TRUE,
smooth = TRUE,
smooth_radius_km = 5,
plot_result = TRUE)
print(df)
6.5 Climate_CHELSAv2.1-bio13_cell
filename: Climate_CHELSAv2.1-bio13_cell.tif
layername: egv_5
English name: Precipitation amount (kg m⁻² month⁻¹) of the wettest month (CHELSA v2.1) within the analysis cell (1 ha)
Latvian name: Slapjākā mēneša nokrišņu daudzums (kg m⁻² mēnesī) (CHELSA v2.1) analīzes šūnā (1 ha)
Procedure: Directly follows CHELSA v2.1. EGV is prepared with the
workflow egvtools::downscale2egv()
with inverse distance weighted (power = 2)
gap filling and soft smoothing (power = 0.5) over 5 km radius of every cell.
Code
# libs ----
if(!require(egvtools)) {remotes::install_github("aavotins/egvtools"); require(egvtools)}
# job ----
localname="Climate_CHELSAv2.1-bio13_cell.tif"
layername="egv_5"
reading="./Geodata/2024/CHELSA/Climate_CHELSAv2.1-bio13_cell.tif"
df <- downscale2egv(
template_path = "./Templates/TemplateRasters/LV100m_10km.tif",
grid_path = "./Templates/TemplateGrids/tikls1km_sauzeme.parquet",
rawfile_path = reading,
out_path = "./RasterGrids_100m/2024/RAW/",
file_name = localname,
layer_name = layername,
fill_gaps = TRUE,
smooth = TRUE,
smooth_radius_km = 5,
plot_result = TRUE)
print(df)
6.6 Climate_CHELSAv2.1-bio14_cell
filename: Climate_CHELSAv2.1-bio14_cell.tif
layername: egv_6
English name: Precipitation amount (kg m⁻² month⁻¹) of the driest month (CHELSA v2.1) within the analysis cell (1 ha)
Latvian name: Sausākā mēneša nokrišņu daudzums (kg m⁻² mēnesī) (CHELSA v2.1) analīzes šūnā (1 ha)
Procedure: Directly follows CHELSA v2.1. EGV is prepared with the
workflow egvtools::downscale2egv()
with inverse distance weighted (power = 2)
gap filling and soft smoothing (power = 0.5) over 5 km radius of every cell.
Code
# libs ----
if(!require(egvtools)) {remotes::install_github("aavotins/egvtools"); require(egvtools)}
# job ----
localname="Climate_CHELSAv2.1-bio14_cell.tif"
layername="egv_6"
reading="./Geodata/2024/CHELSA/Climate_CHELSAv2.1-bio14_cell.tif"
df <- downscale2egv(
template_path = "./Templates/TemplateRasters/LV100m_10km.tif",
grid_path = "./Templates/TemplateGrids/tikls1km_sauzeme.parquet",
rawfile_path = reading,
out_path = "./RasterGrids_100m/2024/RAW/",
file_name = localname,
layer_name = layername,
fill_gaps = TRUE,
smooth = TRUE,
smooth_radius_km = 5,
plot_result = TRUE)
print(df)
6.7 Climate_CHELSAv2.1-bio15_cell
filename: Climate_CHELSAv2.1-bio15_cell.tif
layername: egv_7
English name: Precipitation seasonality (kg m⁻²) (CHELSA v2.1) within the analysis cell (1 ha)
Latvian name: Nokrišņu sezonalitāte (kg m⁻²) (CHELSA v2.1) analīzes šūnā (1 ha)
Procedure: Directly follows CHELSA v2.1. EGV is prepared with the
workflow egvtools::downscale2egv()
with inverse distance weighted (power = 2)
gap filling and soft smoothing (power = 0.5) over 5 km radius of every cell.
Code
# libs ----
if(!require(egvtools)) {remotes::install_github("aavotins/egvtools"); require(egvtools)}
# job ----
localname="Climate_CHELSAv2.1-bio15_cell.tif"
layername="egv_7"
reading="./Geodata/2024/CHELSA/Climate_CHELSAv2.1-bio15_cell.tif"
df <- downscale2egv(
template_path = "./Templates/TemplateRasters/LV100m_10km.tif",
grid_path = "./Templates/TemplateGrids/tikls1km_sauzeme.parquet",
rawfile_path = reading,
out_path = "./RasterGrids_100m/2024/RAW/",
file_name = localname,
layer_name = layername,
fill_gaps = TRUE,
smooth = TRUE,
smooth_radius_km = 5,
plot_result = TRUE)
print(df)
6.8 Climate_CHELSAv2.1-bio16_cell
filename: Climate_CHELSAv2.1-bio16_cell.tif
layername: egv_8
English name: Mean monthly precipitation amount (kg m⁻² month⁻¹) of the wettest quarter (CHELSA v2.1) within the analysis cell (1 ha)
Latvian name: Slapjākā ceturkšņa vidējais nokrišņu daudzums mēnesī (kg m⁻² mēnesī) (CHELSA v2.1) analīzes šūnā (1 ha)
Procedure: Directly follows CHELSA v2.1. EGV is prepared with the
workflow egvtools::downscale2egv()
with inverse distance weighted (power = 2)
gap filling and soft smoothing (power = 0.5) over 5 km radius of every cell.
Code
# libs ----
if(!require(egvtools)) {remotes::install_github("aavotins/egvtools"); require(egvtools)}
# job ----
localname="Climate_CHELSAv2.1-bio16_cell.tif"
layername="egv_8"
reading="./Geodata/2024/CHELSA/Climate_CHELSAv2.1-bio16_cell.tif"
df <- downscale2egv(
template_path = "./Templates/TemplateRasters/LV100m_10km.tif",
grid_path = "./Templates/TemplateGrids/tikls1km_sauzeme.parquet",
rawfile_path = reading,
out_path = "./RasterGrids_100m/2024/RAW/",
file_name = localname,
layer_name = layername,
fill_gaps = TRUE,
smooth = TRUE,
smooth_radius_km = 5,
plot_result = TRUE)
print(df)
6.9 Climate_CHELSAv2.1-bio17_cell
filename: Climate_CHELSAv2.1-bio17_cell.tif
layername: egv_9
English name: Mean monthly precipitation amount (kg m⁻² month⁻¹) of the driest quarter (CHELSA v2.1) within the analysis cell (1 ha)
Latvian name: Sausākā ceturkšņa vidējais nokrišņu daudzums mēnesī (kg m⁻² mēnesī) (CHELSA v2.1) analīzes šūnā (1 ha)
Procedure: Directly follows CHELSA v2.1. EGV is prepared with the
workflow egvtools::downscale2egv()
with inverse distance weighted (power = 2)
gap filling and soft smoothing (power = 0.5) over 5 km radius of every cell.
Code
# libs ----
if(!require(egvtools)) {remotes::install_github("aavotins/egvtools"); require(egvtools)}
# job ----
localname="Climate_CHELSAv2.1-bio17_cell.tif"
layername="egv_9"
reading="./Geodata/2024/CHELSA/Climate_CHELSAv2.1-bio17_cell.tif"
df <- downscale2egv(
template_path = "./Templates/TemplateRasters/LV100m_10km.tif",
grid_path = "./Templates/TemplateGrids/tikls1km_sauzeme.parquet",
rawfile_path = reading,
out_path = "./RasterGrids_100m/2024/RAW/",
file_name = localname,
layer_name = layername,
fill_gaps = TRUE,
smooth = TRUE,
smooth_radius_km = 5,
plot_result = TRUE)
print(df)
6.10 Climate_CHELSAv2.1-bio18_cell
filename: Climate_CHELSAv2.1-bio18_cell.tif
layername: egv_10
English name: Mean monthly precipitation amount (kg m⁻² month⁻¹) of the warmest quarter (CHELSA v2.1) within the analysis cell (1 ha)
Latvian name: Siltākā ceturkšņa vidējais nokrišņu daudzuma mēnesī (kg m⁻² mēnesī) (CHELSA v2.1) analīzes šūnā (1 ha)
Procedure: Directly follows CHELSA v2.1. EGV is prepared with the
workflow egvtools::downscale2egv()
with inverse distance weighted (power = 2)
gap filling and soft smoothing (power = 0.5) over 5 km radius of every cell.
Code
# libs ----
if(!require(egvtools)) {remotes::install_github("aavotins/egvtools"); require(egvtools)}
# job ----
localname="Climate_CHELSAv2.1-bio18_cell.tif"
layername="egv_10"
reading="./Geodata/2024/CHELSA/Climate_CHELSAv2.1-bio18_cell.tif"
df <- downscale2egv(
template_path = "./Templates/TemplateRasters/LV100m_10km.tif",
grid_path = "./Templates/TemplateGrids/tikls1km_sauzeme.parquet",
rawfile_path = reading,
out_path = "./RasterGrids_100m/2024/RAW/",
file_name = localname,
layer_name = layername,
fill_gaps = TRUE,
smooth = TRUE,
smooth_radius_km = 5,
plot_result = TRUE)
print(df)
6.11 Climate_CHELSAv2.1-bio19_cell
filename: Climate_CHELSAv2.1-bio19_cell.tif
layername: egv_11
English name: Mean monthly precipitation amount (kg m⁻² month⁻¹) of the coldest quarter (CHELSA v2.1) within the analysis cell (1 ha)
Latvian name: Aukstākā ceturkšņa vidējais nokrišņu daudzums mēnesī (kg m⁻² mēnesī) (CHELSA v2.1) analīzes šūnā (1 ha)
Procedure: Directly follows CHELSA v2.1. EGV is prepared with the
workflow egvtools::downscale2egv()
with inverse distance weighted (power = 2)
gap filling and soft smoothing (power = 0.5) over 5 km radius of every cell.
Code
# libs ----
if(!require(egvtools)) {remotes::install_github("aavotins/egvtools"); require(egvtools)}
# job ----
localname="Climate_CHELSAv2.1-bio19_cell.tif"
layername="egv_11"
reading="./Geodata/2024/CHELSA/Climate_CHELSAv2.1-bio19_cell.tif"
df <- downscale2egv(
template_path = "./Templates/TemplateRasters/LV100m_10km.tif",
grid_path = "./Templates/TemplateGrids/tikls1km_sauzeme.parquet",
rawfile_path = reading,
out_path = "./RasterGrids_100m/2024/RAW/",
file_name = localname,
layer_name = layername,
fill_gaps = TRUE,
smooth = TRUE,
smooth_radius_km = 5,
plot_result = TRUE)
print(df)
6.12 Climate_CHELSAv2.1-bio2_cell
filename: Climate_CHELSAv2.1-bio2_cell.tif
layername: egv_12
English name: Mean diurnal air temperature range (°C) (CHELSA v2.1) within the analysis cell (1 ha)
Latvian name: Diennakts temperatūru amplitūda (°C) (CHELSA v2.1) analīzes šūnā (1 ha)
Procedure: Directly follows CHELSA v2.1. EGV is prepared with the
workflow egvtools::downscale2egv()
with inverse distance weighted (power = 2)
gap filling and soft smoothing (power = 0.5) over 5 km radius of every cell.
Code
# libs ----
if(!require(egvtools)) {remotes::install_github("aavotins/egvtools"); require(egvtools)}
# job ----
localname="Climate_CHELSAv2.1-bio2_cell.tif"
layername="egv_12"
reading="./Geodata/2024/CHELSA/Climate_CHELSAv2.1-bio2_cell.tif"
df <- downscale2egv(
template_path = "./Templates/TemplateRasters/LV100m_10km.tif",
grid_path = "./Templates/TemplateGrids/tikls1km_sauzeme.parquet",
rawfile_path = reading,
out_path = "./RasterGrids_100m/2024/RAW/",
file_name = localname,
layer_name = layername,
fill_gaps = TRUE,
smooth = TRUE,
smooth_radius_km = 5,
plot_result = TRUE)
print(df)
6.13 Climate_CHELSAv2.1-bio3_cell
filename: Climate_CHELSAv2.1-bio3_cell.tif
layername: egv_13
English name: Isothermality (ratio of diurnal variation to annual variation in temperatures) (°C) (CHELSA v2.1) within the analysis cell (1 ha)
Latvian name: Izotermalitāte (attiecība starp diennakts un gada temperatūras svārstībām) (°C) (CHELSA v2.1) analīzes šūnā (1 ha)
Procedure: Directly follows CHELSA v2.1. EGV is prepared with the
workflow egvtools::downscale2egv()
with inverse distance weighted (power = 2)
gap filling and soft smoothing (power = 0.5) over 5 km radius of every cell.
Code
# libs ----
if(!require(egvtools)) {remotes::install_github("aavotins/egvtools"); require(egvtools)}
# job ----
localname="Climate_CHELSAv2.1-bio3_cell.tif"
layername="egv_13"
reading="./Geodata/2024/CHELSA/Climate_CHELSAv2.1-bio3_cell.tif"
df <- downscale2egv(
template_path = "./Templates/TemplateRasters/LV100m_10km.tif",
grid_path = "./Templates/TemplateGrids/tikls1km_sauzeme.parquet",
rawfile_path = reading,
out_path = "./RasterGrids_100m/2024/RAW/",
file_name = localname,
layer_name = layername,
fill_gaps = TRUE,
smooth = TRUE,
smooth_radius_km = 5,
plot_result = TRUE)
print(df)
6.14 Climate_CHELSAv2.1-bio4_cell
filename: Climate_CHELSAv2.1-bio4_cell.tif
layername: egv_14
English name: Temperature seasonality (standard deviation of the monthly mean temperatures) (°C/100) (CHELSA v2.1) within the analysis cell (1 ha)
Latvian name: Temperatūru sezonalitāte (mēneša vidējo temperatūru standartnovirze) (°C/100) (CHELSA v2.1) analīzes šūnā (1 ha)
Procedure: Directly follows CHELSA v2.1. EGV is prepared with the
workflow egvtools::downscale2egv()
with inverse distance weighted (power = 2)
gap filling and soft smoothing (power = 0.5) over 5 km radius of every cell.
Code
# libs ----
if(!require(egvtools)) {remotes::install_github("aavotins/egvtools"); require(egvtools)}
# job ----
localname="Climate_CHELSAv2.1-bio4_cell.tif"
layername="egv_14"
reading="./Geodata/2024/CHELSA/Climate_CHELSAv2.1-bio4_cell.tif"
df <- downscale2egv(
template_path = "./Templates/TemplateRasters/LV100m_10km.tif",
grid_path = "./Templates/TemplateGrids/tikls1km_sauzeme.parquet",
rawfile_path = reading,
out_path = "./RasterGrids_100m/2024/RAW/",
file_name = localname,
layer_name = layername,
fill_gaps = TRUE,
smooth = TRUE,
smooth_radius_km = 5,
plot_result = TRUE)
print(df)
6.15 Climate_CHELSAv2.1-bio5_cell
filename: Climate_CHELSAv2.1-bio5_cell.tif
layername: egv_15
English name: Mean daily maximum air temperature (°C) of the warmest month (CHELSA v2.1) within the analysis cell (1 ha)
Latvian name: Siltākā mēneša vidējā ikdienas augstākā gaisa temperatūra (°C) (CHELSA v2.1) analīzes šūnā (1 ha)
Procedure: Directly follows CHELSA v2.1. EGV is prepared with the
workflow egvtools::downscale2egv()
with inverse distance weighted (power = 2)
gap filling and soft smoothing (power = 0.5) over 5 km radius of every cell.
Code
# libs ----
if(!require(egvtools)) {remotes::install_github("aavotins/egvtools"); require(egvtools)}
# job ----
localname="Climate_CHELSAv2.1-bio5_cell.tif"
layername="egv_15"
reading="./Geodata/2024/CHELSA/Climate_CHELSAv2.1-bio5_cell.tif"
df <- downscale2egv(
template_path = "./Templates/TemplateRasters/LV100m_10km.tif",
grid_path = "./Templates/TemplateGrids/tikls1km_sauzeme.parquet",
rawfile_path = reading,
out_path = "./RasterGrids_100m/2024/RAW/",
file_name = localname,
layer_name = layername,
fill_gaps = TRUE,
smooth = TRUE,
smooth_radius_km = 5,
plot_result = TRUE)
print(df)
6.16 Climate_CHELSAv2.1-bio6_cell
filename: Climate_CHELSAv2.1-bio6_cell.tif
layername: egv_16
English name: Mean daily minimum air temperature (°C) of the coldest month (CHELSA v2.1) within the analysis cell (1 ha)
Latvian name: Aukstākā mēneša vidējā ikdienas zemākā gaisa temperatūra (°C) (CHELSA v2.1) analīzes šūnā (1 ha)
Procedure: Directly follows CHELSA v2.1. EGV is prepared with the
workflow egvtools::downscale2egv()
with inverse distance weighted (power = 2)
gap filling and soft smoothing (power = 0.5) over 5 km radius of every cell.
Code
# libs ----
if(!require(egvtools)) {remotes::install_github("aavotins/egvtools"); require(egvtools)}
# job ----
localname="Climate_CHELSAv2.1-bio6_cell.tif"
layername="egv_16"
reading="./Geodata/2024/CHELSA/Climate_CHELSAv2.1-bio6_cell.tif"
df <- downscale2egv(
template_path = "./Templates/TemplateRasters/LV100m_10km.tif",
grid_path = "./Templates/TemplateGrids/tikls1km_sauzeme.parquet",
rawfile_path = reading,
out_path = "./RasterGrids_100m/2024/RAW/",
file_name = localname,
layer_name = layername,
fill_gaps = TRUE,
smooth = TRUE,
smooth_radius_km = 5,
plot_result = TRUE)
print(df)
6.17 Climate_CHELSAv2.1-bio7_cell
filename: Climate_CHELSAv2.1-bio7_cell.tif
layername: egv_17
English name: Annual range of air temperature (°C) (CHELSA v2.1) within the analysis cell (1 ha)
Latvian name: Gada temperatūru amplitūda (°C) (CHELSA v2.1) analīzes šūnā (1 ha)
Procedure: Directly follows CHELSA v2.1. EGV is prepared with the
workflow egvtools::downscale2egv()
with inverse distance weighted (power = 2)
gap filling and soft smoothing (power = 0.5) over 5 km radius of every cell.
Code
# libs ----
if(!require(egvtools)) {remotes::install_github("aavotins/egvtools"); require(egvtools)}
# job ----
localname="Climate_CHELSAv2.1-bio7_cell.tif"
layername="egv_17"
reading="./Geodata/2024/CHELSA/Climate_CHELSAv2.1-bio7_cell.tif"
df <- downscale2egv(
template_path = "./Templates/TemplateRasters/LV100m_10km.tif",
grid_path = "./Templates/TemplateGrids/tikls1km_sauzeme.parquet",
rawfile_path = reading,
out_path = "./RasterGrids_100m/2024/RAW/",
file_name = localname,
layer_name = layername,
fill_gaps = TRUE,
smooth = TRUE,
smooth_radius_km = 5,
plot_result = TRUE)
print(df)
6.18 Climate_CHELSAv2.1-bio8_cell
filename: Climate_CHELSAv2.1-bio8_cell.tif
layername: egv_18
English name: Mean daily mean air temperatures (°C) of the wettest quarter (CHELSA v2.1) within the analysis cell (1 ha)
Latvian name: Slapjākā ceturkšņa vidējā ikdienas vidējā gaisa temperatūra (°C) (CHELSA v2.1) analīzes šūnā (1 ha)
Procedure: Directly follows CHELSA v2.1. EGV is prepared with the
workflow egvtools::downscale2egv()
with inverse distance weighted (power = 2)
gap filling and soft smoothing (power = 0.5) over 5 km radius of every cell.
Code
# libs ----
if(!require(egvtools)) {remotes::install_github("aavotins/egvtools"); require(egvtools)}
# job ----
localname="Climate_CHELSAv2.1-bio8_cell.tif"
layername="egv_18"
reading="./Geodata/2024/CHELSA/Climate_CHELSAv2.1-bio8_cell.tif"
df <- downscale2egv(
template_path = "./Templates/TemplateRasters/LV100m_10km.tif",
grid_path = "./Templates/TemplateGrids/tikls1km_sauzeme.parquet",
rawfile_path = reading,
out_path = "./RasterGrids_100m/2024/RAW/",
file_name = localname,
layer_name = layername,
fill_gaps = TRUE,
smooth = TRUE,
smooth_radius_km = 5,
plot_result = TRUE)
print(df)
6.19 Climate_CHELSAv2.1-bio9_cell
filename: Climate_CHELSAv2.1-bio9_cell.tif
layername: egv_19
English name: Mean daily mean air temperatures (°C) of the driest quarter (CHELSA v2.1) within the analysis cell (1 ha)
Latvian name: Sausākā ceturkšņa vidējā ikdienas vidējā gaisa temperatūra (°C) (CHELSA v2.1) analīzes šūnā (1 ha)
Procedure: Directly follows CHELSA v2.1. EGV is prepared with the
workflow egvtools::downscale2egv()
with inverse distance weighted (power = 2)
gap filling and soft smoothing (power = 0.5) over 5 km radius of every cell.
Code
# libs ----
if(!require(egvtools)) {remotes::install_github("aavotins/egvtools"); require(egvtools)}
# job ----
localname="Climate_CHELSAv2.1-bio9_cell.tif"
layername="egv_19"
reading="./Geodata/2024/CHELSA/Climate_CHELSAv2.1-bio9_cell.tif"
df <- downscale2egv(
template_path = "./Templates/TemplateRasters/LV100m_10km.tif",
grid_path = "./Templates/TemplateGrids/tikls1km_sauzeme.parquet",
rawfile_path = reading,
out_path = "./RasterGrids_100m/2024/RAW/",
file_name = localname,
layer_name = layername,
fill_gaps = TRUE,
smooth = TRUE,
smooth_radius_km = 5,
plot_result = TRUE)
print(df)
6.20 Climate_CHELSAv2.1-clt-max_cell
filename: Climate_CHELSAv2.1-clt-max_cell.tif
layername: egv_20
English name: Maximum monthly cloud area fraction (%) (CHELSA v2.1) within the analysis cell (1 ha)
Latvian name: Maksimālais mēneša vidējais mākoņu segums (%) (CHELSA v2.1) analīzes šūnā (1 ha)
Procedure: Directly follows CHELSA v2.1. EGV is prepared with the
workflow egvtools::downscale2egv()
with inverse distance weighted (power = 2)
gap filling and soft smoothing (power = 0.5) over 5 km radius of every cell.
Code
# libs ----
if(!require(egvtools)) {remotes::install_github("aavotins/egvtools"); require(egvtools)}
# job ----
localname="Climate_CHELSAv2.1-clt-max_cell.tif"
layername="egv_20"
reading="./Geodata/2024/CHELSA/Climate_CHELSAv2.1-clt-max_cell.tif"
df <- downscale2egv(
template_path = "./Templates/TemplateRasters/LV100m_10km.tif",
grid_path = "./Templates/TemplateGrids/tikls1km_sauzeme.parquet",
rawfile_path = reading,
out_path = "./RasterGrids_100m/2024/RAW/",
file_name = localname,
layer_name = layername,
fill_gaps = TRUE,
smooth = TRUE,
smooth_radius_km = 5,
plot_result = TRUE)
print(df)
6.21 Climate_CHELSAv2.1-clt-mean_cell
filename: Climate_CHELSAv2.1-clt-mean_cell.tif
layername: egv_21
English name: Mean monthly cloud area fraction (%) (CHELSA v2.1) within the analysis cell (1 ha)
Latvian name: Vidējais mākoņu segums (%) (CHELSA v2.1) analīzes šūnā (1 ha)
Procedure: Directly follows CHELSA v2.1. EGV is prepared with the
workflow egvtools::downscale2egv()
with inverse distance weighted (power = 2)
gap filling and soft smoothing (power = 0.5) over 5 km radius of every cell.
Code
# libs ----
if(!require(egvtools)) {remotes::install_github("aavotins/egvtools"); require(egvtools)}
# job ----
localname="Climate_CHELSAv2.1-clt-mean_cell.tif"
layername="egv_21"
reading="./Geodata/2024/CHELSA/Climate_CHELSAv2.1-clt-mean_cell.tif"
df <- downscale2egv(
template_path = "./Templates/TemplateRasters/LV100m_10km.tif",
grid_path = "./Templates/TemplateGrids/tikls1km_sauzeme.parquet",
rawfile_path = reading,
out_path = "./RasterGrids_100m/2024/RAW/",
file_name = localname,
layer_name = layername,
fill_gaps = TRUE,
smooth = TRUE,
smooth_radius_km = 5,
plot_result = TRUE)
print(df)
6.22 Climate_CHELSAv2.1-clt-min_cell
filename: Climate_CHELSAv2.1-clt-min_cell.tif
layername: egv_22
English name: Minimum monthly cloud area fraction (%) (CHELSA v2.1) within the analysis cell (1 ha)
Latvian name: Minimālais mēneša vidējais mākoņu segums (%) (CHELSA v2.1) analīzes šūnā (1 ha)
Procedure: Directly follows CHELSA v2.1. EGV is prepared with the
workflow egvtools::downscale2egv()
with inverse distance weighted (power = 2)
gap filling and soft smoothing (power = 0.5) over 5 km radius of every cell.
Code
# libs ----
if(!require(egvtools)) {remotes::install_github("aavotins/egvtools"); require(egvtools)}
# job ----
localname="Climate_CHELSAv2.1-clt-min_cell.tif"
layername="egv_22"
reading="./Geodata/2024/CHELSA/Climate_CHELSAv2.1-clt-min_cell.tif"
df <- downscale2egv(
template_path = "./Templates/TemplateRasters/LV100m_10km.tif",
grid_path = "./Templates/TemplateGrids/tikls1km_sauzeme.parquet",
rawfile_path = reading,
out_path = "./RasterGrids_100m/2024/RAW/",
file_name = localname,
layer_name = layername,
fill_gaps = TRUE,
smooth = TRUE,
smooth_radius_km = 5,
plot_result = TRUE)
print(df)
6.23 Climate_CHELSAv2.1-clt-range_cell
filename: Climate_CHELSAv2.1-clt-range_cell.tif
layername: egv_23
English name: Annual range of monthly cloud area fraction (%) (CHELSA v2.1) within the analysis cell (1 ha)
Latvian name: Gada mākoņu seguma amplitūda (%) (CHELSA v2.1) analīzes šūnā (1 ha)
Procedure: Directly follows CHELSA v2.1. EGV is prepared with the
workflow egvtools::downscale2egv()
with inverse distance weighted (power = 2)
gap filling and soft smoothing (power = 0.5) over 5 km radius of every cell.
Code
# libs ----
if(!require(egvtools)) {remotes::install_github("aavotins/egvtools"); require(egvtools)}
# job ----
localname="Climate_CHELSAv2.1-clt-range_cell.tif"
layername="egv_23"
reading="./Geodata/2024/CHELSA/Climate_CHELSAv2.1-clt-range_cell.tif"
df <- downscale2egv(
template_path = "./Templates/TemplateRasters/LV100m_10km.tif",
grid_path = "./Templates/TemplateGrids/tikls1km_sauzeme.parquet",
rawfile_path = reading,
out_path = "./RasterGrids_100m/2024/RAW/",
file_name = localname,
layer_name = layername,
fill_gaps = TRUE,
smooth = TRUE,
smooth_radius_km = 5,
plot_result = TRUE)
print(df)
6.24 Climate_CHELSAv2.1-cmi-max_cell
filename: Climate_CHELSAv2.1-cmi-max_cell.tif
layername: egv_24
English name: Maximum monthly climate moisture index (kg m⁻² month⁻¹) (CHELSA v2.1) within the analysis cell (1 ha)
Latvian name: Maksimālais mēneša vidējais klimata mitruma indekss (kg m⁻² month⁻¹) (CHELSA v2.1) analīzes šūnā (1 ha)
Procedure: Directly follows CHELSA v2.1. EGV is prepared with the
workflow egvtools::downscale2egv()
with inverse distance weighted (power = 2)
gap filling and soft smoothing (power = 0.5) over 5 km radius of every cell.
Code
# libs ----
if(!require(egvtools)) {remotes::install_github("aavotins/egvtools"); require(egvtools)}
# job ----
localname="Climate_CHELSAv2.1-cmi-max_cell.tif"
layername="egv_24"
reading="./Geodata/2024/CHELSA/Climate_CHELSAv2.1-cmi-max_cell.tif"
df <- downscale2egv(
template_path = "./Templates/TemplateRasters/LV100m_10km.tif",
grid_path = "./Templates/TemplateGrids/tikls1km_sauzeme.parquet",
rawfile_path = reading,
out_path = "./RasterGrids_100m/2024/RAW/",
file_name = localname,
layer_name = layername,
fill_gaps = TRUE,
smooth = TRUE,
smooth_radius_km = 5,
plot_result = TRUE)
print(df)
6.25 Climate_CHELSAv2.1-cmi-mean_cell
filename: Climate_CHELSAv2.1-cmi-mean_cell.tif
layername: egv_25
English name: Mean monthly climate moisture index (kg m⁻² month⁻¹) (CHELSA v2.1) within the analysis cell (1 ha)
Latvian name: Vidējais klimata mitruma indekss (kg m⁻² month⁻¹) (CHELSA v2.1) analīzes šūnā (1 ha)
Procedure: Directly follows CHELSA v2.1. EGV is prepared with the
workflow egvtools::downscale2egv()
with inverse distance weighted (power = 2)
gap filling and soft smoothing (power = 0.5) over 5 km radius of every cell.
Code
# libs ----
if(!require(egvtools)) {remotes::install_github("aavotins/egvtools"); require(egvtools)}
# job ----
localname="Climate_CHELSAv2.1-cmi-mean_cell.tif"
layername="egv_25"
reading="./Geodata/2024/CHELSA/Climate_CHELSAv2.1-cmi-mean_cell.tif"
df <- downscale2egv(
template_path = "./Templates/TemplateRasters/LV100m_10km.tif",
grid_path = "./Templates/TemplateGrids/tikls1km_sauzeme.parquet",
rawfile_path = reading,
out_path = "./RasterGrids_100m/2024/RAW/",
file_name = localname,
layer_name = layername,
fill_gaps = TRUE,
smooth = TRUE,
smooth_radius_km = 5,
plot_result = TRUE)
print(df)
6.26 Climate_CHELSAv2.1-cmi-min_cell
filename: Climate_CHELSAv2.1-cmi-min_cell.tif
layername: egv_26
English name: Minimum monthly climate moisture index (kg m⁻² month⁻¹) (CHELSA v2.1) within the analysis cell (1 ha)
Latvian name: Minimālais mēneša vidējais klimata mitruma indekss (kg m⁻² month⁻¹) (CHELSA v2.1) analīzes šūnā (1 ha)
Procedure: Directly follows CHELSA v2.1. EGV is prepared with the
workflow egvtools::downscale2egv()
with inverse distance weighted (power = 2)
gap filling and soft smoothing (power = 0.5) over 5 km radius of every cell.
Code
# libs ----
if(!require(egvtools)) {remotes::install_github("aavotins/egvtools"); require(egvtools)}
# job ----
localname="Climate_CHELSAv2.1-cmi-min_cell.tif"
layername="egv_26"
reading="./Geodata/2024/CHELSA/Climate_CHELSAv2.1-cmi-min_cell.tif"
df <- downscale2egv(
template_path = "./Templates/TemplateRasters/LV100m_10km.tif",
grid_path = "./Templates/TemplateGrids/tikls1km_sauzeme.parquet",
rawfile_path = reading,
out_path = "./RasterGrids_100m/2024/RAW/",
file_name = localname,
layer_name = layername,
fill_gaps = TRUE,
smooth = TRUE,
smooth_radius_km = 5,
plot_result = TRUE)
print(df)
6.27 Climate_CHELSAv2.1-cmi-range_cell
filename: Climate_CHELSAv2.1-cmi-range_cell.tif
layername: egv_27
English name: Annual range of monthly climate moisture index (kg m⁻² month⁻¹) (CHELSA v2.1) within the analysis cell (1 ha)
Latvian name: Gada klimata mitruma indeksa amplitūda (kg m⁻² month⁻¹) (CHELSA v2.1) analīzes šūnā (1 ha)
Procedure: Directly follows CHELSA v2.1. EGV is prepared with the
workflow egvtools::downscale2egv()
with inverse distance weighted (power = 2)
gap filling and soft smoothing (power = 0.5) over 5 km radius of every cell.
Code
# libs ----
if(!require(egvtools)) {remotes::install_github("aavotins/egvtools"); require(egvtools)}
# job ----
localname="Climate_CHELSAv2.1-cmi-range_cell.tif"
layername="egv_27"
reading="./Geodata/2024/CHELSA/Climate_CHELSAv2.1-cmi-range_cell.tif"
df <- downscale2egv(
template_path = "./Templates/TemplateRasters/LV100m_10km.tif",
grid_path = "./Templates/TemplateGrids/tikls1km_sauzeme.parquet",
rawfile_path = reading,
out_path = "./RasterGrids_100m/2024/RAW/",
file_name = localname,
layer_name = layername,
fill_gaps = TRUE,
smooth = TRUE,
smooth_radius_km = 5,
plot_result = TRUE)
print(df)
6.28 Climate_CHELSAv2.1-fcf_cell
filename: Climate_CHELSAv2.1-fcf_cell.tif
layername: egv_28
English name: Frost change frequency (number of events in which tmin or tmax go above or below 0°C) (CHELSA v2.1) within the analysis cell (1 ha)
Latvian name: Sasalšanas gadījumu biežums (zemākā vai augstākā temperatūra šķērso 0°C) (CHELSA v2.1) analīzes šūnā (1 ha)
Procedure: Directly follows CHELSA v2.1. EGV is prepared with the
workflow egvtools::downscale2egv()
with inverse distance weighted (power = 2)
gap filling and soft smoothing (power = 0.5) over 5 km radius of every cell.
Code
# libs ----
if(!require(egvtools)) {remotes::install_github("aavotins/egvtools"); require(egvtools)}
# job ----
localname="Climate_CHELSAv2.1-fcf_cell.tif"
layername="egv_28"
reading="./Geodata/2024/CHELSA/Climate_CHELSAv2.1-fcf_cell.tif"
df <- downscale2egv(
template_path = "./Templates/TemplateRasters/LV100m_10km.tif",
grid_path = "./Templates/TemplateGrids/tikls1km_sauzeme.parquet",
rawfile_path = reading,
out_path = "./RasterGrids_100m/2024/RAW/",
file_name = localname,
layer_name = layername,
fill_gaps = TRUE,
smooth = TRUE,
smooth_radius_km = 5,
plot_result = TRUE)
print(df)
6.29 Climate_CHELSAv2.1-fgd_cell
filename: Climate_CHELSAv2.1-fgd_cell.tif
layername: egv_29
English name: First day of the growing season (TREELIM) (CHELSA v2.1) within the analysis cell (1 ha)
Latvian name: Veģetācijas sezonas pirmā diena (TREELIM) (CHELSA v2.1) analīzes šūnā (1 ha)
Procedure: Directly follows CHELSA v2.1. EGV is prepared with the
workflow egvtools::downscale2egv()
with inverse distance weighted (power = 2)
gap filling and soft smoothing (power = 0.5) over 5 km radius of every cell.
Code
# libs ----
if(!require(egvtools)) {remotes::install_github("aavotins/egvtools"); require(egvtools)}
# job ----
localname="Climate_CHELSAv2.1-fgd_cell.tif"
layername="egv_29"
reading="./Geodata/2024/CHELSA/Climate_CHELSAv2.1-fgd_cell.tif"
df <- downscale2egv(
template_path = "./Templates/TemplateRasters/LV100m_10km.tif",
grid_path = "./Templates/TemplateGrids/tikls1km_sauzeme.parquet",
rawfile_path = reading,
out_path = "./RasterGrids_100m/2024/RAW/",
file_name = localname,
layer_name = layername,
fill_gaps = TRUE,
smooth = TRUE,
smooth_radius_km = 5,
plot_result = TRUE)
print(df)
6.30 Climate_CHELSAv2.1-gdd0_cell
filename: Climate_CHELSAv2.1-gdd0_cell.tif
layername: egv_30
English name: Growing degree days heat sum above 0°C (CHELSA v2.1) within the analysis cell (1 ha)
Latvian name: Aktīvo temperatūru summa no 0°C (CHELSA v2.1) analīzes šūnā (1 ha)
Procedure: Directly follows CHELSA v2.1. EGV is prepared with the
workflow egvtools::downscale2egv()
with inverse distance weighted (power = 2)
gap filling and soft smoothing (power = 0.5) over 5 km radius of every cell.
Code
# libs ----
if(!require(egvtools)) {remotes::install_github("aavotins/egvtools"); require(egvtools)}
# job ----
localname="Climate_CHELSAv2.1-gdd0_cell.tif"
layername="egv_30"
reading="./Geodata/2024/CHELSA/Climate_CHELSAv2.1-gdd0_cell.tif"
df <- downscale2egv(
template_path = "./Templates/TemplateRasters/LV100m_10km.tif",
grid_path = "./Templates/TemplateGrids/tikls1km_sauzeme.parquet",
rawfile_path = reading,
out_path = "./RasterGrids_100m/2024/RAW/",
file_name = localname,
layer_name = layername,
fill_gaps = TRUE,
smooth = TRUE,
smooth_radius_km = 5,
plot_result = TRUE)
print(df)
6.31 Climate_CHELSAv2.1-gdd10_cell
filename: Climate_CHELSAv2.1-gdd10_cell.tif
layername: egv_31
English name: Growing degree days heat sum above 10°C (CHELSA v2.1) within the analysis cell (1 ha)
Latvian name: Aktīvo temperatūru summa no 10°C (CHELSA v2.1) analīzes šūnā (1 ha)
Procedure: Directly follows CHELSA v2.1. EGV is prepared with the
workflow egvtools::downscale2egv()
with inverse distance weighted (power = 2)
gap filling and soft smoothing (power = 0.5) over 5 km radius of every cell.
Code
# libs ----
if(!require(egvtools)) {remotes::install_github("aavotins/egvtools"); require(egvtools)}
# job ----
localname="Climate_CHELSAv2.1-gdd10_cell.tif"
layername="egv_31"
reading="./Geodata/2024/CHELSA/Climate_CHELSAv2.1-gdd10_cell.tif"
df <- downscale2egv(
template_path = "./Templates/TemplateRasters/LV100m_10km.tif",
grid_path = "./Templates/TemplateGrids/tikls1km_sauzeme.parquet",
rawfile_path = reading,
out_path = "./RasterGrids_100m/2024/RAW/",
file_name = localname,
layer_name = layername,
fill_gaps = TRUE,
smooth = TRUE,
smooth_radius_km = 5,
plot_result = TRUE)
print(df)
6.32 Climate_CHELSAv2.1-gdd5_cell
filename: Climate_CHELSAv2.1-gdd5_cell.tif
layername: egv_32
English name: Growing degree days heat sum above 5°C (CHELSA v2.1) within the analysis cell (1 ha)
Latvian name: Aktīvo temperatūru summa no 5°C (CHELSA v2.1) analīzes šūnā (1 ha)
Procedure: Directly follows CHELSA v2.1. EGV is prepared with the
workflow egvtools::downscale2egv()
with inverse distance weighted (power = 2)
gap filling and soft smoothing (power = 0.5) over 5 km radius of every cell.
Code
# libs ----
if(!require(egvtools)) {remotes::install_github("aavotins/egvtools"); require(egvtools)}
# job ----
localname="Climate_CHELSAv2.1-gdd5_cell.tif"
layername="egv_32"
reading="./Geodata/2024/CHELSA/Climate_CHELSAv2.1-gdd5_cell.tif"
df <- downscale2egv(
template_path = "./Templates/TemplateRasters/LV100m_10km.tif",
grid_path = "./Templates/TemplateGrids/tikls1km_sauzeme.parquet",
rawfile_path = reading,
out_path = "./RasterGrids_100m/2024/RAW/",
file_name = localname,
layer_name = layername,
fill_gaps = TRUE,
smooth = TRUE,
smooth_radius_km = 5,
plot_result = TRUE)
print(df)
6.33 Climate_CHELSAv2.1-gddlgd0_cell
filename: Climate_CHELSAv2.1-gddlgd0_cell.tif
layername: egv_33
English name: Last growing degree day above 0°C (CHELSA v2.1) within the analysis cell (1 ha)
Latvian name: Veģetācijas sezonas pēdējā diena no 0°C (CHELSA v2.1) analīzes šūnā (1 ha)
Procedure: Directly follows CHELSA v2.1. EGV is prepared with the
workflow egvtools::downscale2egv()
with inverse distance weighted (power = 2)
gap filling and soft smoothing (power = 0.5) over 5 km radius of every cell.
Code
# libs ----
if(!require(egvtools)) {remotes::install_github("aavotins/egvtools"); require(egvtools)}
# job ----
localname="Climate_CHELSAv2.1-gddlgd0_cell.tif"
layername="egv_33"
reading="./Geodata/2024/CHELSA/Climate_CHELSAv2.1-gddlgd0_cell.tif"
df <- downscale2egv(
template_path = "./Templates/TemplateRasters/LV100m_10km.tif",
grid_path = "./Templates/TemplateGrids/tikls1km_sauzeme.parquet",
rawfile_path = reading,
out_path = "./RasterGrids_100m/2024/RAW/",
file_name = localname,
layer_name = layername,
fill_gaps = TRUE,
smooth = TRUE,
smooth_radius_km = 5,
plot_result = TRUE)
print(df)
6.34 Climate_CHELSAv2.1-gddlgd10_cell
filename: Climate_CHELSAv2.1-gddlgd10_cell.tif
layername: egv_34
English name: Last growing degree day above 10°C (CHELSA v2.1) within the analysis cell (1 ha)
Latvian name: Veģetācijas sezonas pēdējā diena no 10°C (CHELSA v2.1) analīzes šūnā (1 ha)
Procedure: Directly follows CHELSA v2.1. EGV is prepared with the
workflow egvtools::downscale2egv()
with inverse distance weighted (power = 2)
gap filling and soft smoothing (power = 0.5) over 5 km radius of every cell.
Code
# libs ----
if(!require(egvtools)) {remotes::install_github("aavotins/egvtools"); require(egvtools)}
# job ----
localname="Climate_CHELSAv2.1-gddlgd10_cell.tif"
layername="egv_34"
reading="./Geodata/2024/CHELSA/Climate_CHELSAv2.1-gddlgd10_cell.tif"
df <- downscale2egv(
template_path = "./Templates/TemplateRasters/LV100m_10km.tif",
grid_path = "./Templates/TemplateGrids/tikls1km_sauzeme.parquet",
rawfile_path = reading,
out_path = "./RasterGrids_100m/2024/RAW/",
file_name = localname,
layer_name = layername,
fill_gaps = TRUE,
smooth = TRUE,
smooth_radius_km = 5,
plot_result = TRUE)
print(df)
6.35 Climate_CHELSAv2.1-gddlgd5_cell
filename: Climate_CHELSAv2.1-gddlgd5_cell.tif
layername: egv_35
English name: Last growing degree day above 5°C (CHELSA v2.1) within the analysis cell (1 ha)
Latvian name: Veģetācijas sezonas pēdējā diena no 5°C (CHELSA v2.1) analīzes šūnā (1 ha)
Procedure: Directly follows CHELSA v2.1. EGV is prepared with the
workflow egvtools::downscale2egv()
with inverse distance weighted (power = 2)
gap filling and soft smoothing (power = 0.5) over 5 km radius of every cell.
Code
# libs ----
if(!require(egvtools)) {remotes::install_github("aavotins/egvtools"); require(egvtools)}
# job ----
localname="Climate_CHELSAv2.1-gddlgd5_cell.tif"
layername="egv_35"
reading="./Geodata/2024/CHELSA/Climate_CHELSAv2.1-gddlgd5_cell.tif"
df <- downscale2egv(
template_path = "./Templates/TemplateRasters/LV100m_10km.tif",
grid_path = "./Templates/TemplateGrids/tikls1km_sauzeme.parquet",
rawfile_path = reading,
out_path = "./RasterGrids_100m/2024/RAW/",
file_name = localname,
layer_name = layername,
fill_gaps = TRUE,
smooth = TRUE,
smooth_radius_km = 5,
plot_result = TRUE)
print(df)
6.36 Climate_CHELSAv2.1-gdgfgd0_cell
filename: Climate_CHELSAv2.1-gdgfgd0_cell.tif
layername: egv_36
English name: First growing degree day above 0°C (CHELSA v2.1) within the analysis cell (1 ha)
Latvian name: Veģetācijas sezonas pirmā diena no 0°C (CHELSA v2.1) analīzes šūnā (1 ha)
Procedure: Directly follows CHELSA v2.1. EGV is prepared with the
workflow egvtools::downscale2egv()
with inverse distance weighted (power = 2)
gap filling and soft smoothing (power = 0.5) over 5 km radius of every cell.
Code
# libs ----
if(!require(egvtools)) {remotes::install_github("aavotins/egvtools"); require(egvtools)}
# job ----
localname="Climate_CHELSAv2.1-gdgfgd0_cell.tif"
layername="egv_36"
reading="./Geodata/2024/CHELSA/Climate_CHELSAv2.1-gdgfgd0_cell.tif"
df <- downscale2egv(
template_path = "./Templates/TemplateRasters/LV100m_10km.tif",
grid_path = "./Templates/TemplateGrids/tikls1km_sauzeme.parquet",
rawfile_path = reading,
out_path = "./RasterGrids_100m/2024/RAW/",
file_name = localname,
layer_name = layername,
fill_gaps = TRUE,
smooth = TRUE,
smooth_radius_km = 5,
plot_result = TRUE)
print(df)
6.37 Climate_CHELSAv2.1-gdgfgd10_cell
filename: Climate_CHELSAv2.1-gdgfgd10_cell.tif
layername: egv_37
English name: First growing degree day above 10°C (CHELSA v2.1) within the analysis cell (1 ha)
Latvian name: Veģetācijas sezonas pirmā diena no 10°C (CHELSA v2.1) analīzes šūnā (1 ha)
Procedure: Directly follows CHELSA v2.1. EGV is prepared with the
workflow egvtools::downscale2egv()
with inverse distance weighted (power = 2)
gap filling and soft smoothing (power = 0.5) over 5 km radius of every cell.
Code
# libs ----
if(!require(egvtools)) {remotes::install_github("aavotins/egvtools"); require(egvtools)}
# job ----
localname="Climate_CHELSAv2.1-gdgfgd10_cell.tif"
layername="egv_37"
reading="./Geodata/2024/CHELSA/Climate_CHELSAv2.1-gdgfgd10_cell.tif"
df <- downscale2egv(
template_path = "./Templates/TemplateRasters/LV100m_10km.tif",
grid_path = "./Templates/TemplateGrids/tikls1km_sauzeme.parquet",
rawfile_path = reading,
out_path = "./RasterGrids_100m/2024/RAW/",
file_name = localname,
layer_name = layername,
fill_gaps = TRUE,
smooth = TRUE,
smooth_radius_km = 5,
plot_result = TRUE)
print(df)
6.38 Climate_CHELSAv2.1-gdgfgd5_cell
filename: Climate_CHELSAv2.1-gdgfgd5_cell.tif
layername: egv_38
English name: First growing degree day above 5°C (CHELSA v2.1) within the analysis cell (1 ha)
Latvian name: Veģetācijas sezonas pirmā diena no 5°C (CHELSA v2.1) analīzes šūnā (1 ha)
Procedure: Directly follows CHELSA v2.1. EGV is prepared with the
workflow egvtools::downscale2egv()
with inverse distance weighted (power = 2)
gap filling and soft smoothing (power = 0.5) over 5 km radius of every cell.
Code
# libs ----
if(!require(egvtools)) {remotes::install_github("aavotins/egvtools"); require(egvtools)}
# job ----
localname="Climate_CHELSAv2.1-gdgfgd5_cell.tif"
layername="egv_38"
reading="./Geodata/2024/CHELSA/Climate_CHELSAv2.1-gdgfgd5_cell.tif"
df <- downscale2egv(
template_path = "./Templates/TemplateRasters/LV100m_10km.tif",
grid_path = "./Templates/TemplateGrids/tikls1km_sauzeme.parquet",
rawfile_path = reading,
out_path = "./RasterGrids_100m/2024/RAW/",
file_name = localname,
layer_name = layername,
fill_gaps = TRUE,
smooth = TRUE,
smooth_radius_km = 5,
plot_result = TRUE)
print(df)
6.39 Climate_CHELSAv2.1-gsl_cell
filename: Climate_CHELSAv2.1-gsl_cell.tif
layername: egv_39
English name: Length of the growing season (TREELIM) (CHELSA v2.1) within the analysis cell (1 ha)
Latvian name: Veģetācijas sezonas garums (TREELIM) (CHELSA v2.1) analīzes šūnā (1 ha)
Procedure: Directly follows CHELSA v2.1. EGV is prepared with the
workflow egvtools::downscale2egv()
with inverse distance weighted (power = 2)
gap filling and soft smoothing (power = 0.5) over 5 km radius of every cell.
Code
# libs ----
if(!require(egvtools)) {remotes::install_github("aavotins/egvtools"); require(egvtools)}
# job ----
localname="Climate_CHELSAv2.1-gsl_cell.tif"
layername="egv_39"
reading="./Geodata/2024/CHELSA/Climate_CHELSAv2.1-gsl_cell.tif"
df <- downscale2egv(
template_path = "./Templates/TemplateRasters/LV100m_10km.tif",
grid_path = "./Templates/TemplateGrids/tikls1km_sauzeme.parquet",
rawfile_path = reading,
out_path = "./RasterGrids_100m/2024/RAW/",
file_name = localname,
layer_name = layername,
fill_gaps = TRUE,
smooth = TRUE,
smooth_radius_km = 5,
plot_result = TRUE)
print(df)
6.40 Climate_CHELSAv2.1-gsp_cell
filename: Climate_CHELSAv2.1-gsp_cell.tif
layername: egv_40
English name: Accumulated precipitation amount (kg m⁻² year⁻¹) on growing season days (TREELIM) (CHELSA v2.1) within the analysis cell (1 ha)
Latvian name: Veģetācijas sezonā (TREELIM) uzkrātais nokrišņu daudzums (kg m⁻² year⁻¹) (CHELSA v2.1) analīzes šūnā (1 ha)
Procedure: Directly follows CHELSA v2.1. EGV is prepared with the
workflow egvtools::downscale2egv()
with inverse distance weighted (power = 2)
gap filling and soft smoothing (power = 0.5) over 5 km radius of every cell.
Code
# libs ----
if(!require(egvtools)) {remotes::install_github("aavotins/egvtools"); require(egvtools)}
# job ----
localname="Climate_CHELSAv2.1-gsp_cell.tif"
layername="egv_40"
reading="./Geodata/2024/CHELSA/Climate_CHELSAv2.1-gsp_cell.tif"
df <- downscale2egv(
template_path = "./Templates/TemplateRasters/LV100m_10km.tif",
grid_path = "./Templates/TemplateGrids/tikls1km_sauzeme.parquet",
rawfile_path = reading,
out_path = "./RasterGrids_100m/2024/RAW/",
file_name = localname,
layer_name = layername,
fill_gaps = TRUE,
smooth = TRUE,
smooth_radius_km = 5,
plot_result = TRUE)
print(df)
6.41 Climate_CHELSAv2.1-gst_cell
filename: Climate_CHELSAv2.1-gst_cell.tif
layername: egv_41
English name: Mean temperature of the growing season (TREELIM) (CHELSA v2.1) within the analysis cell (1 ha)
Latvian name: Vidējā ikdienas gaisa temperatūra (°C) veģetācijas sezonā (TREELIM) (CHELSA v2.1) analīzes šūnā (1 ha)
Procedure: Directly follows CHELSA v2.1. EGV is prepared with the
workflow egvtools::downscale2egv()
with inverse distance weighted (power = 2)
gap filling and soft smoothing (power = 0.5) over 5 km radius of every cell.
Code
# libs ----
if(!require(egvtools)) {remotes::install_github("aavotins/egvtools"); require(egvtools)}
# job ----
localname="Climate_CHELSAv2.1-gst_cell.tif"
layername="egv_41"
reading="./Geodata/2024/CHELSA/Climate_CHELSAv2.1-gst_cell.tif"
df <- downscale2egv(
template_path = "./Templates/TemplateRasters/LV100m_10km.tif",
grid_path = "./Templates/TemplateGrids/tikls1km_sauzeme.parquet",
rawfile_path = reading,
out_path = "./RasterGrids_100m/2024/RAW/",
file_name = localname,
layer_name = layername,
fill_gaps = TRUE,
smooth = TRUE,
smooth_radius_km = 5,
plot_result = TRUE)
print(df)
6.42 Climate_CHELSAv2.1-hurs-max_cell
filename: Climate_CHELSAv2.1-hurs-max_cell.tif
layername: egv_42
English name: Maximum monthly near-surface relative humidity (%) (CHELSA v2.1) within the analysis cell (1 ha)
Latvian name: Maksimālais mēneša vidējais gaisa mitrums (%) (CHELSA v2.1) analīzes šūnā (1 ha)
Procedure: Directly follows CHELSA v2.1. EGV is prepared with the
workflow egvtools::downscale2egv()
with inverse distance weighted (power = 2)
gap filling and soft smoothing (power = 0.5) over 5 km radius of every cell.
Code
# libs ----
if(!require(egvtools)) {remotes::install_github("aavotins/egvtools"); require(egvtools)}
# job ----
localname="Climate_CHELSAv2.1-hurs-max_cell.tif"
layername="egv_42"
reading="./Geodata/2024/CHELSA/Climate_CHELSAv2.1-hurs-max_cell.tif"
df <- downscale2egv(
template_path = "./Templates/TemplateRasters/LV100m_10km.tif",
grid_path = "./Templates/TemplateGrids/tikls1km_sauzeme.parquet",
rawfile_path = reading,
out_path = "./RasterGrids_100m/2024/RAW/",
file_name = localname,
layer_name = layername,
fill_gaps = TRUE,
smooth = TRUE,
smooth_radius_km = 5,
plot_result = TRUE)
print(df)
6.43 Climate_CHELSAv2.1-hurs-mean_cell
filename: Climate_CHELSAv2.1-hurs-mean_cell.tif
layername: egv_43
English name: Mean monthly near-surface relative humidity (%) (CHELSA v2.1) within the analysis cell (1 ha)
Latvian name: Vidējais ikmēneša gaisa mitrums (%) (CHELSA v2.1) analīzes šūnā (1 ha)
Procedure: Directly follows CHELSA v2.1. EGV is prepared with the
workflow egvtools::downscale2egv()
with inverse distance weighted (power = 2)
gap filling and soft smoothing (power = 0.5) over 5 km radius of every cell.
Code
# libs ----
if(!require(egvtools)) {remotes::install_github("aavotins/egvtools"); require(egvtools)}
# job ----
localname="Climate_CHELSAv2.1-hurs-mean_cell.tif"
layername="egv_43"
reading="./Geodata/2024/CHELSA/Climate_CHELSAv2.1-hurs-mean_cell.tif"
df <- downscale2egv(
template_path = "./Templates/TemplateRasters/LV100m_10km.tif",
grid_path = "./Templates/TemplateGrids/tikls1km_sauzeme.parquet",
rawfile_path = reading,
out_path = "./RasterGrids_100m/2024/RAW/",
file_name = localname,
layer_name = layername,
fill_gaps = TRUE,
smooth = TRUE,
smooth_radius_km = 5,
plot_result = TRUE)
print(df)
6.44 Climate_CHELSAv2.1-hurs-min_cell
filename: Climate_CHELSAv2.1-hurs-min_cell.tif
layername: egv_44
English name: Minimum monthly near-surface relative humidity (%) (CHELSA v2.1) within the analysis cell (1 ha)
Latvian name: Minimālais mēneša vidējais gaisa mitrums (%) (CHELSA v2.1) analīzes šūnā (1 ha)
Procedure: Directly follows CHELSA v2.1. EGV is prepared with the
workflow egvtools::downscale2egv()
with inverse distance weighted (power = 2)
gap filling and soft smoothing (power = 0.5) over 5 km radius of every cell.
Code
# libs ----
if(!require(egvtools)) {remotes::install_github("aavotins/egvtools"); require(egvtools)}
# job ----
localname="Climate_CHELSAv2.1-hurs-min_cell.tif"
layername="egv_44"
reading="./Geodata/2024/CHELSA/Climate_CHELSAv2.1-hurs-min_cell.tif"
df <- downscale2egv(
template_path = "./Templates/TemplateRasters/LV100m_10km.tif",
grid_path = "./Templates/TemplateGrids/tikls1km_sauzeme.parquet",
rawfile_path = reading,
out_path = "./RasterGrids_100m/2024/RAW/",
file_name = localname,
layer_name = layername,
fill_gaps = TRUE,
smooth = TRUE,
smooth_radius_km = 5,
plot_result = TRUE)
print(df)
6.45 Climate_CHELSAv2.1-hurs-range_cell
filename: Climate_CHELSAv2.1-hurs-range_cell.tif
layername: egv_45
English name: Annual range of monthly near-surface relative humidity (%) (CHELSA v2.1) within the analysis cell (1 ha)
Latvian name: Gada gaisa mitruma amplitūda (%) (CHELSA v2.1) analīzes šūnā (1 ha)
Procedure: Directly follows CHELSA v2.1. EGV is prepared with the
workflow egvtools::downscale2egv()
with inverse distance weighted (power = 2)
gap filling and soft smoothing (power = 0.5) over 5 km radius of every cell.
Code
# libs ----
if(!require(egvtools)) {remotes::install_github("aavotins/egvtools"); require(egvtools)}
# job ----
localname="Climate_CHELSAv2.1-hurs-range_cell.tif"
layername="egv_45"
reading="./Geodata/2024/CHELSA/Climate_CHELSAv2.1-hurs-range_cell.tif"
df <- downscale2egv(
template_path = "./Templates/TemplateRasters/LV100m_10km.tif",
grid_path = "./Templates/TemplateGrids/tikls1km_sauzeme.parquet",
rawfile_path = reading,
out_path = "./RasterGrids_100m/2024/RAW/",
file_name = localname,
layer_name = layername,
fill_gaps = TRUE,
smooth = TRUE,
smooth_radius_km = 5,
plot_result = TRUE)
print(df)
6.46 Climate_CHELSAv2.1-lgd_cell
filename: Climate_CHELSAv2.1-lgd_cell.tif
layername: egv_46
English name: Last day of the growing season (TREELIM) (CHELSA v2.1) within the analysis cell (1 ha)
Latvian name: Pēdējā veģetācijas sezonas diena (TREELIM) (CHELSA v2.1) analīzes šūnā (1 ha)
Procedure: Directly follows CHELSA v2.1. EGV is prepared with the
workflow egvtools::downscale2egv()
with inverse distance weighted (power = 2)
gap filling and soft smoothing (power = 0.5) over 5 km radius of every cell.
Code
# libs ----
if(!require(egvtools)) {remotes::install_github("aavotins/egvtools"); require(egvtools)}
# job ----
localname="Climate_CHELSAv2.1-lgd_cell.tif"
layername="egv_46"
reading="./Geodata/2024/CHELSA/Climate_CHELSAv2.1-lgd_cell.tif"
df <- downscale2egv(
template_path = "./Templates/TemplateRasters/LV100m_10km.tif",
grid_path = "./Templates/TemplateGrids/tikls1km_sauzeme.parquet",
rawfile_path = reading,
out_path = "./RasterGrids_100m/2024/RAW/",
file_name = localname,
layer_name = layername,
fill_gaps = TRUE,
smooth = TRUE,
smooth_radius_km = 5,
plot_result = TRUE)
print(df)
6.47 Climate_CHELSAv2.1-ngd0_cell
filename: Climate_CHELSAv2.1-ngd0_cell.tif
layername: egv_47
English name: Number of days at which 2m air temperature > 0°C (CHELSA v2.1) within the analysis cell (1 ha)
Latvian name: Dienu skaits, kurā gaisa temperatūra 2 m augstumā pārsniedz 0°C (CHELSA v2.1) analīzes šūnā (1 ha)
Procedure: Directly follows CHELSA v2.1. EGV is prepared with the
workflow egvtools::downscale2egv()
with inverse distance weighted (power = 2)
gap filling and soft smoothing (power = 0.5) over 5 km radius of every cell.
Code
# libs ----
if(!require(egvtools)) {remotes::install_github("aavotins/egvtools"); require(egvtools)}
# job ----
localname="Climate_CHELSAv2.1-ngd0_cell.tif"
layername="egv_47"
reading="./Geodata/2024/CHELSA/Climate_CHELSAv2.1-ngd0_cell.tif"
df <- downscale2egv(
template_path = "./Templates/TemplateRasters/LV100m_10km.tif",
grid_path = "./Templates/TemplateGrids/tikls1km_sauzeme.parquet",
rawfile_path = reading,
out_path = "./RasterGrids_100m/2024/RAW/",
file_name = localname,
layer_name = layername,
fill_gaps = TRUE,
smooth = TRUE,
smooth_radius_km = 5,
plot_result = TRUE)
print(df)
6.48 Climate_CHELSAv2.1-ngd10_cell
filename: Climate_CHELSAv2.1-ngd10_cell.tif
layername: egv_48
English name: Number of days at which 2m air temperature > 10°C (CHELSA v2.1) within the analysis cell (1 ha)
Latvian name: Dienu skaits, kurā gaisa temperatūra 2 m augstumā pārsniedz 10°C (CHELSA v2.1) analīzes šūnā (1 ha)
Procedure: Directly follows CHELSA v2.1. EGV is prepared with the
workflow egvtools::downscale2egv()
with inverse distance weighted (power = 2)
gap filling and soft smoothing (power = 0.5) over 5 km radius of every cell.
Code
# libs ----
if(!require(egvtools)) {remotes::install_github("aavotins/egvtools"); require(egvtools)}
# job ----
localname="Climate_CHELSAv2.1-ngd10_cell.tif"
layername="egv_48"
reading="./Geodata/2024/CHELSA/Climate_CHELSAv2.1-ngd10_cell.tif"
df <- downscale2egv(
template_path = "./Templates/TemplateRasters/LV100m_10km.tif",
grid_path = "./Templates/TemplateGrids/tikls1km_sauzeme.parquet",
rawfile_path = reading,
out_path = "./RasterGrids_100m/2024/RAW/",
file_name = localname,
layer_name = layername,
fill_gaps = TRUE,
smooth = TRUE,
smooth_radius_km = 5,
plot_result = TRUE)
print(df)
6.49 Climate_CHELSAv2.1-ngd5_cell
filename: Climate_CHELSAv2.1-ngd5_cell.tif
layername: egv_49
English name: Number of days at which 2m air temperature > 5°C (CHELSA v2.1) within the analysis cell (1 ha)
Latvian name: Dienu skaits, kurā gaisa temperatūra 2 m augstumā pārsniedz 5°C (CHELSA v2.1) analīzes šūnā (1 ha)
Procedure: Directly follows CHELSA v2.1. EGV is prepared with the
workflow egvtools::downscale2egv()
with inverse distance weighted (power = 2)
gap filling and soft smoothing (power = 0.5) over 5 km radius of every cell.
Code
# libs ----
if(!require(egvtools)) {remotes::install_github("aavotins/egvtools"); require(egvtools)}
# job ----
localname="Climate_CHELSAv2.1-ngd5_cell.tif"
layername="egv_49"
reading="./Geodata/2024/CHELSA/Climate_CHELSAv2.1-ngd5_cell.tif"
df <- downscale2egv(
template_path = "./Templates/TemplateRasters/LV100m_10km.tif",
grid_path = "./Templates/TemplateGrids/tikls1km_sauzeme.parquet",
rawfile_path = reading,
out_path = "./RasterGrids_100m/2024/RAW/",
file_name = localname,
layer_name = layername,
fill_gaps = TRUE,
smooth = TRUE,
smooth_radius_km = 5,
plot_result = TRUE)
print(df)
6.50 Climate_CHELSAv2.1-npp_cell
filename: Climate_CHELSAv2.1-npp_cell.tif
layername: egv_50
English name: Net primary productivity (g C m⁻² year⁻¹) (CHELSA v2.1) within the analysis cell (1 ha)
Latvian name: Neto primārā produkcija (g C m⁻² year⁻¹) (CHELSA v2.1) analīzes šūnā (1 ha)
Procedure: Directly follows CHELSA v2.1. EGV is prepared with the
workflow egvtools::downscale2egv()
with inverse distance weighted (power = 2)
gap filling and soft smoothing (power = 0.5) over 5 km radius of every cell.
Code
# libs ----
if(!require(egvtools)) {remotes::install_github("aavotins/egvtools"); require(egvtools)}
# job ----
localname="Climate_CHELSAv2.1-npp_cell.tif"
layername="egv_50"
reading="./Geodata/2024/CHELSA/Climate_CHELSAv2.1-npp_cell.tif"
df <- downscale2egv(
template_path = "./Templates/TemplateRasters/LV100m_10km.tif",
grid_path = "./Templates/TemplateGrids/tikls1km_sauzeme.parquet",
rawfile_path = reading,
out_path = "./RasterGrids_100m/2024/RAW/",
file_name = localname,
layer_name = layername,
fill_gaps = TRUE,
smooth = TRUE,
smooth_radius_km = 5,
plot_result = TRUE)
print(df)
6.51 Climate_CHELSAv2.1-pet-penman-max_cell
filename: Climate_CHELSAv2.1-pet-penman-max_cell.tif
layername: egv_51
English name: Maximum monthly potential evapotranspiration (kg m⁻² month⁻¹) (CHELSA v2.1) within the analysis cell (1 ha)
Latvian name: Maksimālā mēneša potenciālā evapotranspirācija (kg m⁻² month⁻¹) (CHELSA v2.1) analīzes šūnā (1 ha)
Procedure: Directly follows CHELSA v2.1. EGV is prepared with the
workflow egvtools::downscale2egv()
with inverse distance weighted (power = 2)
gap filling and soft smoothing (power = 0.5) over 5 km radius of every cell.
Code
# libs ----
if(!require(egvtools)) {remotes::install_github("aavotins/egvtools"); require(egvtools)}
# job ----
localname="Climate_CHELSAv2.1-pet-penman-max_cell.tif"
layername="egv_51"
reading="./Geodata/2024/CHELSA/Climate_CHELSAv2.1-pet-penman-max_cell.tif"
df <- downscale2egv(
template_path = "./Templates/TemplateRasters/LV100m_10km.tif",
grid_path = "./Templates/TemplateGrids/tikls1km_sauzeme.parquet",
rawfile_path = reading,
out_path = "./RasterGrids_100m/2024/RAW/",
file_name = localname,
layer_name = layername,
fill_gaps = TRUE,
smooth = TRUE,
smooth_radius_km = 5,
plot_result = TRUE)
print(df)
6.52 Climate_CHELSAv2.1-pet-penman-mean_cell
filename: Climate_CHELSAv2.1-pet-penman-mean_cell.tif
layername: egv_52
English name: Mean monthly potential evapotranspiration (kg m⁻² month⁻¹) (CHELSA v2.1) within the analysis cell (1 ha)
Latvian name: Vidējā mēneša potenciālā evapotranspirācija (kg m⁻² month⁻¹) (CHELSA v2.1) analīzes šūnā (1 ha)
Procedure: Directly follows CHELSA v2.1. EGV is prepared with the
workflow egvtools::downscale2egv()
with inverse distance weighted (power = 2)
gap filling and soft smoothing (power = 0.5) over 5 km radius of every cell.
Code
# libs ----
if(!require(egvtools)) {remotes::install_github("aavotins/egvtools"); require(egvtools)}
# job ----
localname="Climate_CHELSAv2.1-pet-penman-mean_cell.tif"
layername="egv_52"
reading="./Geodata/2024/CHELSA/Climate_CHELSAv2.1-pet-penman-mean_cell.tif"
df <- downscale2egv(
template_path = "./Templates/TemplateRasters/LV100m_10km.tif",
grid_path = "./Templates/TemplateGrids/tikls1km_sauzeme.parquet",
rawfile_path = reading,
out_path = "./RasterGrids_100m/2024/RAW/",
file_name = localname,
layer_name = layername,
fill_gaps = TRUE,
smooth = TRUE,
smooth_radius_km = 5,
plot_result = TRUE)
print(df)
6.53 Climate_CHELSAv2.1-pet-penman-min_cell
filename: Climate_CHELSAv2.1-pet-penman-min_cell.tif
layername: egv_53
English name: Minimum monthly potential evapotranspiration (kg m⁻² month⁻¹) (CHELSA v2.1) within the analysis cell (1 ha)
Latvian name: Minimālā mēneša vidējā potenciālā evapotranspirācija (kg m⁻² month⁻¹) (CHELSA v2.1) analīzes šūnā (1 ha)
Procedure: Directly follows CHELSA v2.1. EGV is prepared with the
workflow egvtools::downscale2egv()
with inverse distance weighted (power = 2)
gap filling and soft smoothing (power = 0.5) over 5 km radius of every cell.
Code
# libs ----
if(!require(egvtools)) {remotes::install_github("aavotins/egvtools"); require(egvtools)}
# job ----
localname="Climate_CHELSAv2.1-pet-penman-min_cell.tif"
layername="egv_53"
reading="./Geodata/2024/CHELSA/Climate_CHELSAv2.1-pet-penman-min_cell.tif"
df <- downscale2egv(
template_path = "./Templates/TemplateRasters/LV100m_10km.tif",
grid_path = "./Templates/TemplateGrids/tikls1km_sauzeme.parquet",
rawfile_path = reading,
out_path = "./RasterGrids_100m/2024/RAW/",
file_name = localname,
layer_name = layername,
fill_gaps = TRUE,
smooth = TRUE,
smooth_radius_km = 5,
plot_result = TRUE)
print(df)
6.54 Climate_CHELSAv2.1-pet-penman-range_cell
filename: Climate_CHELSAv2.1-pet-penman-range_cell.tif
layername: egv_54
English name: Annual range of monthly potential evapotranspiration (kg m⁻² month⁻¹) (CHELSA v2.1) within the analysis cell (1 ha)
Latvian name: Gada potenciālā evapotranspirācijas amplitūda (kg m⁻² month⁻¹) (CHELSA v2.1) analīzes šūnā (1 ha)
Procedure: Directly follows CHELSA v2.1. EGV is prepared with the
workflow egvtools::downscale2egv()
with inverse distance weighted (power = 2)
gap filling and soft smoothing (power = 0.5) over 5 km radius of every cell.
Code
# libs ----
if(!require(egvtools)) {remotes::install_github("aavotins/egvtools"); require(egvtools)}
# job ----
localname="Climate_CHELSAv2.1-pet-penman-range_cell.tif"
layername="egv_54"
reading="./Geodata/2024/CHELSA/Climate_CHELSAv2.1-pet-penman-range_cell.tif"
df <- downscale2egv(
template_path = "./Templates/TemplateRasters/LV100m_10km.tif",
grid_path = "./Templates/TemplateGrids/tikls1km_sauzeme.parquet",
rawfile_path = reading,
out_path = "./RasterGrids_100m/2024/RAW/",
file_name = localname,
layer_name = layername,
fill_gaps = TRUE,
smooth = TRUE,
smooth_radius_km = 5,
plot_result = TRUE)
print(df)
6.55 Climate_CHELSAv2.1-rsds-max_cell
filename: Climate_CHELSAv2.1-rsds-max_cell.tif
layername: egv_55
English name: Maximum monthly surface downwelling shortwave flux in air (MJ m⁻² d⁻¹) (CHELSA v2.1) within the analysis cell (1 ha)
Latvian name: Maksimālā mēneša vidējā Zemes virsmu sasniedzošā saules radiācija (MJ m⁻² d⁻¹) (CHELSA v2.1) analīzes šūnā (1 ha)
Procedure: Directly follows CHELSA v2.1. EGV is prepared with the
workflow egvtools::downscale2egv()
with inverse distance weighted (power = 2)
gap filling and soft smoothing (power = 0.5) over 5 km radius of every cell.
Code
# libs ----
if(!require(egvtools)) {remotes::install_github("aavotins/egvtools"); require(egvtools)}
# job ----
localname="Climate_CHELSAv2.1-rsds-max_cell.tif"
layername="egv_55"
reading="./Geodata/2024/CHELSA/Climate_CHELSAv2.1-rsds-max_cell.tif"
df <- downscale2egv(
template_path = "./Templates/TemplateRasters/LV100m_10km.tif",
grid_path = "./Templates/TemplateGrids/tikls1km_sauzeme.parquet",
rawfile_path = reading,
out_path = "./RasterGrids_100m/2024/RAW/",
file_name = localname,
layer_name = layername,
fill_gaps = TRUE,
smooth = TRUE,
smooth_radius_km = 5,
plot_result = TRUE)
print(df)
6.56 Climate_CHELSAv2.1-rsds-mean_cell
filename: Climate_CHELSAv2.1-rsds-mean_cell.tif
layername: egv_56
English name: Mean monthly surface downwelling shortwave flux in air (MJ m⁻² d⁻¹) (CHELSA v2.1) within the analysis cell (1 ha)
Latvian name: Vidējā Zemes virsmu sasniedzošā saules radiācija (MJ m⁻² d⁻¹) (CHELSA v2.1) analīzes šūnā (1 ha)
Procedure: Directly follows CHELSA v2.1. EGV is prepared with the
workflow egvtools::downscale2egv()
with inverse distance weighted (power = 2)
gap filling and soft smoothing (power = 0.5) over 5 km radius of every cell.
Code
# libs ----
if(!require(egvtools)) {remotes::install_github("aavotins/egvtools"); require(egvtools)}
# job ----
localname="Climate_CHELSAv2.1-rsds-mean_cell.tif"
layername="egv_56"
reading="./Geodata/2024/CHELSA/Climate_CHELSAv2.1-rsds-mean_cell.tif"
df <- downscale2egv(
template_path = "./Templates/TemplateRasters/LV100m_10km.tif",
grid_path = "./Templates/TemplateGrids/tikls1km_sauzeme.parquet",
rawfile_path = reading,
out_path = "./RasterGrids_100m/2024/RAW/",
file_name = localname,
layer_name = layername,
fill_gaps = TRUE,
smooth = TRUE,
smooth_radius_km = 5,
plot_result = TRUE)
print(df)
6.57 Climate_CHELSAv2.1-rsds-min_cell
filename: Climate_CHELSAv2.1-rsds-min_cell.tif
layername: egv_57
English name: Minimum monthly surface shortwave flux in air (MJ m⁻² d⁻¹) (CHELSA v2.1) within the analysis cell (1 ha)
Latvian name: Minimālā mēneša vidējā Zemes virsmu sasniedzošā saules radiācija (MJ m⁻² d⁻¹) (CHELSA v2.1) analīzes šūnā (1 ha)
Procedure: Directly follows CHELSA v2.1. EGV is prepared with the
workflow egvtools::downscale2egv()
with inverse distance weighted (power = 2)
gap filling and soft smoothing (power = 0.5) over 5 km radius of every cell.
Code
# libs ----
if(!require(egvtools)) {remotes::install_github("aavotins/egvtools"); require(egvtools)}
# job ----
localname="Climate_CHELSAv2.1-rsds-min_cell.tif"
layername="egv_57"
reading="./Geodata/2024/CHELSA/Climate_CHELSAv2.1-rsds-min_cell.tif"
df <- downscale2egv(
template_path = "./Templates/TemplateRasters/LV100m_10km.tif",
grid_path = "./Templates/TemplateGrids/tikls1km_sauzeme.parquet",
rawfile_path = reading,
out_path = "./RasterGrids_100m/2024/RAW/",
file_name = localname,
layer_name = layername,
fill_gaps = TRUE,
smooth = TRUE,
smooth_radius_km = 5,
plot_result = TRUE)
print(df)
6.58 Climate_CHELSAv2.1-rsds-range_cell
filename: Climate_CHELSAv2.1-rsds-range_cell.tif
layername: egv_58
English name: Annual range of monthly surface downwelling shortwave flux in air (MJ m⁻² d⁻¹) (CHELSA v2.1) within the analysis cell (1 ha)
Latvian name: Gada amplitūda Zemes virsmu sasniedzošajai saules radiācijai (MJ m⁻² d⁻¹) (CHELSA v2.1) analīzes šūnā (1 ha)
Procedure: Directly follows CHELSA v2.1. EGV is prepared with the
workflow egvtools::downscale2egv()
with inverse distance weighted (power = 2)
gap filling and soft smoothing (power = 0.5) over 5 km radius of every cell.
Code
# libs ----
if(!require(egvtools)) {remotes::install_github("aavotins/egvtools"); require(egvtools)}
# job ----
localname="Climate_CHELSAv2.1-rsds-range_cell.tif"
layername="egv_58"
reading="./Geodata/2024/CHELSA/Climate_CHELSAv2.1-rsds-range_cell.tif"
df <- downscale2egv(
template_path = "./Templates/TemplateRasters/LV100m_10km.tif",
grid_path = "./Templates/TemplateGrids/tikls1km_sauzeme.parquet",
rawfile_path = reading,
out_path = "./RasterGrids_100m/2024/RAW/",
file_name = localname,
layer_name = layername,
fill_gaps = TRUE,
smooth = TRUE,
smooth_radius_km = 5,
plot_result = TRUE)
print(df)
6.59 Climate_CHELSAv2.1-scd_cell
filename: Climate_CHELSAv2.1-scd_cell.tif
layername: egv_59
English name: Number of days with snow cover (TREELIM) (CHELSA v2.1) within the analysis cell (1 ha)
Latvian name: Dienu ar sniega segu skaits (TREELIM) (CHELSA v2.1) analīzes šūnā (1 ha)
Procedure: Directly follows CHELSA v2.1. EGV is prepared with the
workflow egvtools::downscale2egv()
with inverse distance weighted (power = 2)
gap filling and soft smoothing (power = 0.5) over 5 km radius of every cell.
Code
# libs ----
if(!require(egvtools)) {remotes::install_github("aavotins/egvtools"); require(egvtools)}
# job ----
localname="Climate_CHELSAv2.1-scd_cell.tif"
layername="egv_59"
reading="./Geodata/2024/CHELSA/Climate_CHELSAv2.1-scd_cell.tif"
df <- downscale2egv(
template_path = "./Templates/TemplateRasters/LV100m_10km.tif",
grid_path = "./Templates/TemplateGrids/tikls1km_sauzeme.parquet",
rawfile_path = reading,
out_path = "./RasterGrids_100m/2024/RAW/",
file_name = localname,
layer_name = layername,
fill_gaps = TRUE,
smooth = TRUE,
smooth_radius_km = 5,
plot_result = TRUE)
print(df)
6.60 Climate_CHELSAv2.1-sfcWind-max_cell
filename: Climate_CHELSAv2.1-sfcWind-max_cell.tif
layername: egv_60
English name: Maximum monthly near-surface wind speed (m s⁻¹) (CHELSA v2.1) within the analysis cell (1 ha)
Latvian name: Maksimālais mēneša vidējais piezemes slāņa vēja ātrums (m s⁻¹) (CHELSA v2.1) analīzes šūnā (1 ha)
Procedure: Directly follows CHELSA v2.1. EGV is prepared with the
workflow egvtools::downscale2egv()
with inverse distance weighted (power = 2)
gap filling and soft smoothing (power = 0.5) over 5 km radius of every cell.
Code
# libs ----
if(!require(egvtools)) {remotes::install_github("aavotins/egvtools"); require(egvtools)}
# job ----
localname="Climate_CHELSAv2.1-sfcWind-max_cell.tif"
layername="egv_60"
reading="./Geodata/2024/CHELSA/Climate_CHELSAv2.1-sfcWind-max_cell.tif"
df <- downscale2egv(
template_path = "./Templates/TemplateRasters/LV100m_10km.tif",
grid_path = "./Templates/TemplateGrids/tikls1km_sauzeme.parquet",
rawfile_path = reading,
out_path = "./RasterGrids_100m/2024/RAW/",
file_name = localname,
layer_name = layername,
fill_gaps = TRUE,
smooth = TRUE,
smooth_radius_km = 5,
plot_result = TRUE)
print(df)
6.61 Climate_CHELSAv2.1-sfcWind-mean_cell
filename: Climate_CHELSAv2.1-sfcWind-mean_cell.tif
layername: egv_61
English name: Mean monthly near-surface wind speed (m s⁻¹) (CHELSA v2.1) within the analysis cell (1 ha)
Latvian name: Vidējais piezemes slāņa vēja ātrums (m s⁻¹) (CHELSA v2.1) analīzes šūnā (1 ha)
Procedure: Directly follows CHELSA v2.1. EGV is prepared with the
workflow egvtools::downscale2egv()
with inverse distance weighted (power = 2)
gap filling and soft smoothing (power = 0.5) over 5 km radius of every cell.
Code
# libs ----
if(!require(egvtools)) {remotes::install_github("aavotins/egvtools"); require(egvtools)}
# job ----
localname="Climate_CHELSAv2.1-sfcWind-mean_cell.tif"
layername="egv_61"
reading="./Geodata/2024/CHELSA/Climate_CHELSAv2.1-sfcWind-mean_cell.tif"
df <- downscale2egv(
template_path = "./Templates/TemplateRasters/LV100m_10km.tif",
grid_path = "./Templates/TemplateGrids/tikls1km_sauzeme.parquet",
rawfile_path = reading,
out_path = "./RasterGrids_100m/2024/RAW/",
file_name = localname,
layer_name = layername,
fill_gaps = TRUE,
smooth = TRUE,
smooth_radius_km = 5,
plot_result = TRUE)
print(df)
6.62 Climate_CHELSAv2.1-sfcWind-min_cell
filename: Climate_CHELSAv2.1-sfcWind-min_cell.tif
layername: egv_62
English name: Minimum monthly near-surface wind speed (m s⁻¹) (CHELSA v2.1) within the analysis cell (1 ha)
Latvian name: Minimālais mēneša vidējais piezemes slāņa vēja ātrums (m s⁻¹) (CHELSA v2.1) analīzes šūnā (1 ha)
Procedure: Directly follows CHELSA v2.1. EGV is prepared with the
workflow egvtools::downscale2egv()
with inverse distance weighted (power = 2)
gap filling and soft smoothing (power = 0.5) over 5 km radius of every cell.
Code
# libs ----
if(!require(egvtools)) {remotes::install_github("aavotins/egvtools"); require(egvtools)}
# job ----
localname="Climate_CHELSAv2.1-sfcWind-min_cell.tif"
layername="egv_62"
reading="./Geodata/2024/CHELSA/Climate_CHELSAv2.1-sfcWind-min_cell.tif"
df <- downscale2egv(
template_path = "./Templates/TemplateRasters/LV100m_10km.tif",
grid_path = "./Templates/TemplateGrids/tikls1km_sauzeme.parquet",
rawfile_path = reading,
out_path = "./RasterGrids_100m/2024/RAW/",
file_name = localname,
layer_name = layername,
fill_gaps = TRUE,
smooth = TRUE,
smooth_radius_km = 5,
plot_result = TRUE)
print(df)
6.63 Climate_CHELSAv2.1-sfcWind-range_cell
filename: Climate_CHELSAv2.1-sfcWind-range_cell.tif
layername: egv_63
English name: Annual range of monthly near-surface wind speed (m s⁻¹) (CHELSA v2.1) within the analysis cell (1 ha)
Latvian name: Gada amplitūda vidējam piezemes slāņa vēja ātrumam (m s⁻¹) (CHELSA v2.1) analīzes šūnā (1 ha)
Procedure: Directly follows CHELSA v2.1. EGV is prepared with the
workflow egvtools::downscale2egv()
with inverse distance weighted (power = 2)
gap filling and soft smoothing (power = 0.5) over 5 km radius of every cell.
Code
# libs ----
if(!require(egvtools)) {remotes::install_github("aavotins/egvtools"); require(egvtools)}
# job ----
localname="Climate_CHELSAv2.1-sfcWind-range_cell.tif"
layername="egv_63"
reading="./Geodata/2024/CHELSA/Climate_CHELSAv2.1-sfcWind-range_cell.tif"
df <- downscale2egv(
template_path = "./Templates/TemplateRasters/LV100m_10km.tif",
grid_path = "./Templates/TemplateGrids/tikls1km_sauzeme.parquet",
rawfile_path = reading,
out_path = "./RasterGrids_100m/2024/RAW/",
file_name = localname,
layer_name = layername,
fill_gaps = TRUE,
smooth = TRUE,
smooth_radius_km = 5,
plot_result = TRUE)
print(df)
6.64 Climate_CHELSAv2.1-swb_cell
filename: Climate_CHELSAv2.1-swb_cell.tif
layername: egv_64
English name: Site water balance (kg m⁻² year⁻¹) (CHELSA v2.1) within the analysis cell (1 ha)
Latvian name: Ūdens bilance (kg m⁻² year⁻¹) (CHELSA v2.1) analīzes šūnā (1 ha)
Procedure: Directly follows CHELSA v2.1. EGV is prepared with the
workflow egvtools::downscale2egv()
with inverse distance weighted (power = 2)
gap filling and soft smoothing (power = 0.5) over 5 km radius of every cell.
Code
# libs ----
if(!require(egvtools)) {remotes::install_github("aavotins/egvtools"); require(egvtools)}
# job ----
localname="Climate_CHELSAv2.1-swb_cell.tif"
layername="egv_64"
reading="./Geodata/2024/CHELSA/Climate_CHELSAv2.1-swb_cell.tif"
df <- downscale2egv(
template_path = "./Templates/TemplateRasters/LV100m_10km.tif",
grid_path = "./Templates/TemplateGrids/tikls1km_sauzeme.parquet",
rawfile_path = reading,
out_path = "./RasterGrids_100m/2024/RAW/",
file_name = localname,
layer_name = layername,
fill_gaps = TRUE,
smooth = TRUE,
smooth_radius_km = 5,
plot_result = TRUE)
print(df)
6.65 Climate_CHELSAv2.1-swe_cell
filename: Climate_CHELSAv2.1-swe_cell.tif
layername: egv_65
English name: Snow water equivalent (kg m⁻² year⁻¹) (CHELSA v2.1) within the analysis cell (1 ha)
Latvian name: Ūdens ekvivalents sniegā (kg m⁻² year⁻¹) (CHELSA v2.1) analīzes šūnā (1 ha)
Procedure: Directly follows CHELSA v2.1. EGV is prepared with the
workflow egvtools::downscale2egv()
with inverse distance weighted (power = 2)
gap filling and soft smoothing (power = 0.5) over 5 km radius of every cell.
Code
# libs ----
if(!require(egvtools)) {remotes::install_github("aavotins/egvtools"); require(egvtools)}
# job ----
localname="Climate_CHELSAv2.1-swe_cell.tif"
layername="egv_65"
reading="./Geodata/2024/CHELSA/Climate_CHELSAv2.1-swe_cell.tif"
df <- downscale2egv(
template_path = "./Templates/TemplateRasters/LV100m_10km.tif",
grid_path = "./Templates/TemplateGrids/tikls1km_sauzeme.parquet",
rawfile_path = reading,
out_path = "./RasterGrids_100m/2024/RAW/",
file_name = localname,
layer_name = layername,
fill_gaps = TRUE,
smooth = TRUE,
smooth_radius_km = 5,
plot_result = TRUE)
print(df)
6.66 Climate_CHELSAv2.1-vpd-max_cell
filename: Climate_CHELSAv2.1-vpd-max_cell.tif
layername: egv_66
English name: Maximum monthly vapor pressure deficit (Pa) (CHELSA v2.1) within the analysis cell (1 ha)
Latvian name: Maksimālais mēneša vidējais iztvaikošanas spiediena deficīts (Pa) (CHELSA v2.1) analīzes šūnā (1 ha)
Procedure: Directly follows CHELSA v2.1. EGV is prepared with the
workflow egvtools::downscale2egv()
with inverse distance weighted (power = 2)
gap filling and soft smoothing (power = 0.5) over 5 km radius of every cell.
Code
# libs ----
if(!require(egvtools)) {remotes::install_github("aavotins/egvtools"); require(egvtools)}
# job ----
localname="Climate_CHELSAv2.1-vpd-max_cell.tif"
layername="egv_66"
reading="./Geodata/2024/CHELSA/Climate_CHELSAv2.1-vpd-max_cell.tif"
df <- downscale2egv(
template_path = "./Templates/TemplateRasters/LV100m_10km.tif",
grid_path = "./Templates/TemplateGrids/tikls1km_sauzeme.parquet",
rawfile_path = reading,
out_path = "./RasterGrids_100m/2024/RAW/",
file_name = localname,
layer_name = layername,
fill_gaps = TRUE,
smooth = TRUE,
smooth_radius_km = 5,
plot_result = TRUE)
print(df)
6.67 Climate_CHELSAv2.1-vpd-mean_cell
filename: Climate_CHELSAv2.1-vpd-mean_cell.tif
layername: egv_67
English name: Mean monthly vapor pressure deficit (Pa) (CHELSA v2.1) within the analysis cell (1 ha)
Latvian name: Vidējais iztvaikošanas spiediena deficīts (Pa) (CHELSA v2.1) analīzes šūnā (1 ha)
Procedure: Directly follows CHELSA v2.1. EGV is prepared with the
workflow egvtools::downscale2egv()
with inverse distance weighted (power = 2)
gap filling and soft smoothing (power = 0.5) over 5 km radius of every cell.
Code
# libs ----
if(!require(egvtools)) {remotes::install_github("aavotins/egvtools"); require(egvtools)}
# job ----
localname="Climate_CHELSAv2.1-vpd-mean_cell.tif"
layername="egv_67"
reading="./Geodata/2024/CHELSA/Climate_CHELSAv2.1-vpd-mean_cell.tif"
df <- downscale2egv(
template_path = "./Templates/TemplateRasters/LV100m_10km.tif",
grid_path = "./Templates/TemplateGrids/tikls1km_sauzeme.parquet",
rawfile_path = reading,
out_path = "./RasterGrids_100m/2024/RAW/",
file_name = localname,
layer_name = layername,
fill_gaps = TRUE,
smooth = TRUE,
smooth_radius_km = 5,
plot_result = TRUE)
print(df)
6.68 Climate_CHELSAv2.1-vpd-min_cell
filename: Climate_CHELSAv2.1-vpd-min_cell.tif
layername: egv_68
English name: Minimum monthly vapor pressure deficit (Pa) (CHELSA v2.1) within the analysis cell (1 ha)
Latvian name: Minimālais mēneša vidējais iztvaikošanas spiediena deficīts (Pa) (CHELSA v2.1) analīzes šūnā (1 ha)
Procedure: Directly follows CHELSA v2.1. EGV is prepared with the
workflow egvtools::downscale2egv()
with inverse distance weighted (power = 2)
gap filling and soft smoothing (power = 0.5) over 5 km radius of every cell.
Code
# libs ----
if(!require(egvtools)) {remotes::install_github("aavotins/egvtools"); require(egvtools)}
# job ----
localname="Climate_CHELSAv2.1-vpd-min_cell.tif"
layername="egv_68"
reading="./Geodata/2024/CHELSA/Climate_CHELSAv2.1-vpd-min_cell.tif"
df <- downscale2egv(
template_path = "./Templates/TemplateRasters/LV100m_10km.tif",
grid_path = "./Templates/TemplateGrids/tikls1km_sauzeme.parquet",
rawfile_path = reading,
out_path = "./RasterGrids_100m/2024/RAW/",
file_name = localname,
layer_name = layername,
fill_gaps = TRUE,
smooth = TRUE,
smooth_radius_km = 5,
plot_result = TRUE)
print(df)
6.69 Climate_CHELSAv2.1-vpd-range_cell
filename: Climate_CHELSAv2.1-vpd-range_cell.tif
layername: egv_69
English name: Annual range of monthly vapor pressure deficit (Pa) (CHELSA v2.1) within the analysis cell (1 ha)
Latvian name: Gada iztvaikošanas spiediena deficīta amplitūda (Pa) (CHELSA v2.1) analīzes šūnā (1 ha)
Procedure: Directly follows CHELSA v2.1. EGV is prepared with the
workflow egvtools::downscale2egv()
with inverse distance weighted (power = 2)
gap filling and soft smoothing (power = 0.5) over 5 km radius of every cell.
Code
# libs ----
if(!require(egvtools)) {remotes::install_github("aavotins/egvtools"); require(egvtools)}
# job ----
localname="Climate_CHELSAv2.1-vpd-range_cell.tif"
layername="egv_69"
reading="./Geodata/2024/CHELSA/Climate_CHELSAv2.1-vpd-range_cell.tif"
df <- downscale2egv(
template_path = "./Templates/TemplateRasters/LV100m_10km.tif",
grid_path = "./Templates/TemplateGrids/tikls1km_sauzeme.parquet",
rawfile_path = reading,
out_path = "./RasterGrids_100m/2024/RAW/",
file_name = localname,
layer_name = layername,
fill_gaps = TRUE,
smooth = TRUE,
smooth_radius_km = 5,
plot_result = TRUE)
print(df)
6.70 HydroClim_01-max_cell
filename: HydroClim_01-max_cell.tif
layername: egv_70
English name: Maximum per subcatchment upstream mean annual air temperature (°C) (HydroClim) within the analysis cell (1 ha)
Latvian name: Sateces apakšbaseina maksimālā vidējā gaisa temperatūra augštecē (°C) (HydroClim) analīzes šūnā (1 ha)
Procedure: Information - both basins and raster layers - from HydroClim data
is used. First, basin CRS is transformed to epsg:3059. Then zonal statistics (per basin) with
layer specific summary function - max - are calculated (exactextractr::exact_extract()
)
and then rasterized with egvtools::polygon2input()
. Once rasterized to input data,
EGV is created with egvtools::input2egv()
. To prevent from gaps at the edges,
inderse distance weighted (power = 2) gap filling is implemented. To save disk space,
intermediate input layer is unlinked.
Code
# libs ----
if(!require(egvtools)) {remotes::install_github("aavotins/egvtools"); require(egvtools)}
if(!require(terra)) {install.packages("terra"); require(terra)}
if(!require(tidyverse)) {install.packages("tidyverse"); require(tidyverse)}
if(!require(sf)) {install.packages("sf"); require(sf)}
if(!require(sfarrow)) {install.packages("sfarrow"); require(sfarrow)}
if(!require(exactextractr)) {install.packages("exactextractr"); require(exactextractr)}
# basins ----
level12=st_read("./Geodata/2024/HydroClim/hybas_lake_eu_lev01-12_v1c/hybas_lake_eu_lev12_v1c.shp")
grid_1km=sfarrow::st_read_parquet("./Templates/TemplateGrids/tikls1km_sauzeme.parquet")
grid_1km=st_transform(grid_1km,crs=3059)
level12=st_transform(level12,crs=3059)
level12=level12[grid_1km,,]
level12=st_make_valid(level12)
# job ----
localname="HydroClim_01-max_cell.tif"
layername="egv_70"
summary_function="max"
slanis=rast(paste0("./Geodata/2024/HydroClim/",localname))
level12$Hydro_values=exact_extract(slanis,level12,fun=summary_function)
polygon2input(vector_data = level12,
template_path = "./Templates/TemplateRasters/LV10m_10km.tif",
out_path = "./RasterGrids_10m/2024/",
file_name = localname,
value_field = "Hydro_values",
fun="first",
value_type = "continuous",
prepare=FALSE,
project_mode = "auto",
check_na = FALSE,
plot_result=FALSE,
plot_gaps = FALSE,
overwrite=TRUE)
egvrez=input2egv(input=paste0("./RasterGrids_10m/2024/",localname),
egv_template= "./Templates/TemplateRasters/LV100m_10km.tif",
summary_function = "average",
missing_job = "FillOutput",
input_template = "./Templates/TemplateRasters/LV10m_10km.tif",
outlocation = "./RasterGrids_100m/2024/RAW/",
outfilename = localname,
layername = layername,
idw_weight = 2,
plot_gaps = FALSE,plot_final = FALSE)
egvrez
unlink(paste0("./RasterGrids_10m/2024/",localname))
6.71 HydroClim_02-max_cell
filename: HydroClim_02-max_cell.tif
layername: egv_71
English name: Maximum per subcatchment upstream mean diurnal air temperature range (°C) (HydroClim) within the analysis cell (1 ha)
Latvian name: Sateces apakšbaseina maksimālā diennakts gaisa temperatūras amplitūda augštecē (°C) (HydroClim) analīzes šūnā (1 ha)
Procedure: Information - both basins and raster layers - from HydroClim data
is used. First, basin CRS is transformed to epsg:3059. Then zonal statistics (per basin) with
layer specific summary function - max - are calculated (exactextractr::exact_extract()
)
and then rasterized with egvtools::polygon2input()
. Once rasterized to input data,
EGV is created with egvtools::input2egv()
. To prevent from gaps at the edges,
inderse distance weighted (power = 2) gap filling is implemented. To save disk space,
intermediate input layer is unlinked.
Code
# libs ----
if(!require(egvtools)) {remotes::install_github("aavotins/egvtools"); require(egvtools)}
if(!require(terra)) {install.packages("terra"); require(terra)}
if(!require(tidyverse)) {install.packages("tidyverse"); require(tidyverse)}
if(!require(sf)) {install.packages("sf"); require(sf)}
if(!require(sfarrow)) {install.packages("sfarrow"); require(sfarrow)}
if(!require(exactextractr)) {install.packages("exactextractr"); require(exactextractr)}
# basins ----
level12=st_read("./Geodata/2024/HydroClim/hybas_lake_eu_lev01-12_v1c/hybas_lake_eu_lev12_v1c.shp")
grid_1km=sfarrow::st_read_parquet("./Templates/TemplateGrids/tikls1km_sauzeme.parquet")
grid_1km=st_transform(grid_1km,crs=3059)
level12=st_transform(level12,crs=3059)
level12=level12[grid_1km,,]
level12=st_make_valid(level12)
# job ----
localname="HydroClim_02-max_cell.tif"
layername="egv_71"
summary_function="max"
slanis=rast(paste0("./Geodata/2024/HydroClim/",localname))
level12$Hydro_values=exact_extract(slanis,level12,fun=summary_function)
polygon2input(vector_data = level12,
template_path = "./Templates/TemplateRasters/LV10m_10km.tif",
out_path = "./RasterGrids_10m/2024/",
file_name = localname,
value_field = "Hydro_values",
fun="first",
value_type = "continuous",
prepare=FALSE,
project_mode = "auto",
check_na = FALSE,
plot_result=FALSE,
plot_gaps = FALSE,
overwrite=TRUE)
egvrez=input2egv(input=paste0("./RasterGrids_10m/2024/",localname),
egv_template= "./Templates/TemplateRasters/LV100m_10km.tif",
summary_function = "average",
missing_job = "FillOutput",
input_template = "./Templates/TemplateRasters/LV10m_10km.tif",
outlocation = "./RasterGrids_100m/2024/RAW/",
outfilename = localname,
layername = layername,
idw_weight = 2,
plot_gaps = FALSE,plot_final = FALSE)
egvrez
unlink(paste0("./RasterGrids_10m/2024/",localname))
6.72 HydroClim_03-max_cell
filename: HydroClim_03-max_cell.tif
layername: egv_72
English name: Maximum per subcatchment upstream isothermality (ratio of diurnal variation to annual variation in temperatures) (°C) (HydroClim) within the analysis cell (1 ha)
Latvian name: Sateces apakšbaseina maksimālā izotermalitāte augštecē (°C) (HydroClim) analīzes šūnā (1 ha)
Procedure: Information - both basins and raster layers - from HydroClim data
is used. First, basin CRS is transformed to epsg:3059. Then zonal statistics (per basin) with
layer specific summary function - max - are calculated (exactextractr::exact_extract()
)
and then rasterized with egvtools::polygon2input()
. Once rasterized to input data,
EGV is created with egvtools::input2egv()
. To prevent from gaps at the edges,
inderse distance weighted (power = 2) gap filling is implemented. To save disk space,
intermediate input layer is unlinked.
Code
# libs ----
if(!require(egvtools)) {remotes::install_github("aavotins/egvtools"); require(egvtools)}
if(!require(terra)) {install.packages("terra"); require(terra)}
if(!require(tidyverse)) {install.packages("tidyverse"); require(tidyverse)}
if(!require(sf)) {install.packages("sf"); require(sf)}
if(!require(sfarrow)) {install.packages("sfarrow"); require(sfarrow)}
if(!require(exactextractr)) {install.packages("exactextractr"); require(exactextractr)}
# basins ----
level12=st_read("./Geodata/2024/HydroClim/hybas_lake_eu_lev01-12_v1c/hybas_lake_eu_lev12_v1c.shp")
grid_1km=sfarrow::st_read_parquet("./Templates/TemplateGrids/tikls1km_sauzeme.parquet")
grid_1km=st_transform(grid_1km,crs=3059)
level12=st_transform(level12,crs=3059)
level12=level12[grid_1km,,]
level12=st_make_valid(level12)
# job ----
localname="HydroClim_03-max_cell.tif"
layername="egv_72"
summary_function="max"
slanis=rast(paste0("./Geodata/2024/HydroClim/",localname))
level12$Hydro_values=exact_extract(slanis,level12,fun=summary_function)
polygon2input(vector_data = level12,
template_path = "./Templates/TemplateRasters/LV10m_10km.tif",
out_path = "./RasterGrids_10m/2024/",
file_name = localname,
value_field = "Hydro_values",
fun="first",
value_type = "continuous",
prepare=FALSE,
project_mode = "auto",
check_na = FALSE,
plot_result=FALSE,
plot_gaps = FALSE,
overwrite=TRUE)
egvrez=input2egv(input=paste0("./RasterGrids_10m/2024/",localname),
egv_template= "./Templates/TemplateRasters/LV100m_10km.tif",
summary_function = "average",
missing_job = "FillOutput",
input_template = "./Templates/TemplateRasters/LV10m_10km.tif",
outlocation = "./RasterGrids_100m/2024/RAW/",
outfilename = localname,
layername = layername,
idw_weight = 2,
plot_gaps = FALSE,plot_final = FALSE)
egvrez
unlink(paste0("./RasterGrids_10m/2024/",localname))
6.73 HydroClim_04-max_cell
filename: HydroClim_04-max_cell.tif
layername: egv_73
English name: Maximum per subcatchment upstream temperature seasonality (standard deviation of the monthly mean temperatures) (°C/100) (HydroClim) within the analysis cell (1 ha)
Latvian name: Sateces apakšbaseina maksimālā temperatūras sezonalitāte augštecē (°C/100) (HydroClim) analīzes šūnā (1 ha)
Procedure: Information - both basins and raster layers - from HydroClim data
is used. First, basin CRS is transformed to epsg:3059. Then zonal statistics (per basin) with
layer specific summary function - max - are calculated (exactextractr::exact_extract()
)
and then rasterized with egvtools::polygon2input()
. Once rasterized to input data,
EGV is created with egvtools::input2egv()
. To prevent from gaps at the edges,
inderse distance weighted (power = 2) gap filling is implemented. To save disk space,
intermediate input layer is unlinked.
Code
# libs ----
if(!require(egvtools)) {remotes::install_github("aavotins/egvtools"); require(egvtools)}
if(!require(terra)) {install.packages("terra"); require(terra)}
if(!require(tidyverse)) {install.packages("tidyverse"); require(tidyverse)}
if(!require(sf)) {install.packages("sf"); require(sf)}
if(!require(sfarrow)) {install.packages("sfarrow"); require(sfarrow)}
if(!require(exactextractr)) {install.packages("exactextractr"); require(exactextractr)}
# basins ----
level12=st_read("./Geodata/2024/HydroClim/hybas_lake_eu_lev01-12_v1c/hybas_lake_eu_lev12_v1c.shp")
grid_1km=sfarrow::st_read_parquet("./Templates/TemplateGrids/tikls1km_sauzeme.parquet")
grid_1km=st_transform(grid_1km,crs=3059)
level12=st_transform(level12,crs=3059)
level12=level12[grid_1km,,]
level12=st_make_valid(level12)
# job ----
localname="HydroClim_04-max_cell.tif"
layername="egv_73"
summary_function="max"
slanis=rast(paste0("./Geodata/2024/HydroClim/",localname))
level12$Hydro_values=exact_extract(slanis,level12,fun=summary_function)
polygon2input(vector_data = level12,
template_path = "./Templates/TemplateRasters/LV10m_10km.tif",
out_path = "./RasterGrids_10m/2024/",
file_name = localname,
value_field = "Hydro_values",
fun="first",
value_type = "continuous",
prepare=FALSE,
project_mode = "auto",
check_na = FALSE,
plot_result=FALSE,
plot_gaps = FALSE,
overwrite=TRUE)
egvrez=input2egv(input=paste0("./RasterGrids_10m/2024/",localname),
egv_template= "./Templates/TemplateRasters/LV100m_10km.tif",
summary_function = "average",
missing_job = "FillOutput",
input_template = "./Templates/TemplateRasters/LV10m_10km.tif",
outlocation = "./RasterGrids_100m/2024/RAW/",
outfilename = localname,
layername = layername,
idw_weight = 2,
plot_gaps = FALSE,plot_final = FALSE)
egvrez
unlink(paste0("./RasterGrids_10m/2024/",localname))
6.74 HydroClim_05-max_cell
filename: HydroClim_05-max_cell.tif
layername: egv_74
English name: Maximum per subcatchment upstream mean daily maximum air temperature (°C) of the warmest month (HydroClim) within the analysis cell (1 ha)
Latvian name: Sateces apakšbaseina maksimālā augšteces dienas vidējā gaisa temperatūra siltākajā mēnesī (°C) (HydroClim) analīzes šūnā (1 ha)
Procedure: Information - both basins and raster layers - from HydroClim data
is used. First, basin CRS is transformed to epsg:3059. Then zonal statistics (per basin) with
layer specific summary function - max - are calculated (exactextractr::exact_extract()
)
and then rasterized with egvtools::polygon2input()
. Once rasterized to input data,
EGV is created with egvtools::input2egv()
. To prevent from gaps at the edges,
inderse distance weighted (power = 2) gap filling is implemented. To save disk space,
intermediate input layer is unlinked.
Code
# libs ----
if(!require(egvtools)) {remotes::install_github("aavotins/egvtools"); require(egvtools)}
if(!require(terra)) {install.packages("terra"); require(terra)}
if(!require(tidyverse)) {install.packages("tidyverse"); require(tidyverse)}
if(!require(sf)) {install.packages("sf"); require(sf)}
if(!require(sfarrow)) {install.packages("sfarrow"); require(sfarrow)}
if(!require(exactextractr)) {install.packages("exactextractr"); require(exactextractr)}
# basins ----
level12=st_read("./Geodata/2024/HydroClim/hybas_lake_eu_lev01-12_v1c/hybas_lake_eu_lev12_v1c.shp")
grid_1km=sfarrow::st_read_parquet("./Templates/TemplateGrids/tikls1km_sauzeme.parquet")
grid_1km=st_transform(grid_1km,crs=3059)
level12=st_transform(level12,crs=3059)
level12=level12[grid_1km,,]
level12=st_make_valid(level12)
# job ----
localname="HydroClim_05-max_cell.tif"
layername="egv_74"
summary_function="max"
slanis=rast(paste0("./Geodata/2024/HydroClim/",localname))
level12$Hydro_values=exact_extract(slanis,level12,fun=summary_function)
polygon2input(vector_data = level12,
template_path = "./Templates/TemplateRasters/LV10m_10km.tif",
out_path = "./RasterGrids_10m/2024/",
file_name = localname,
value_field = "Hydro_values",
fun="first",
value_type = "continuous",
prepare=FALSE,
project_mode = "auto",
check_na = FALSE,
plot_result=FALSE,
plot_gaps = FALSE,
overwrite=TRUE)
egvrez=input2egv(input=paste0("./RasterGrids_10m/2024/",localname),
egv_template= "./Templates/TemplateRasters/LV100m_10km.tif",
summary_function = "average",
missing_job = "FillOutput",
input_template = "./Templates/TemplateRasters/LV10m_10km.tif",
outlocation = "./RasterGrids_100m/2024/RAW/",
outfilename = localname,
layername = layername,
idw_weight = 2,
plot_gaps = FALSE,plot_final = FALSE)
egvrez
unlink(paste0("./RasterGrids_10m/2024/",localname))
6.75 HydroClim_06-min_cell
filename: HydroClim_06-min_cell.tif
layername: egv_75
English name: Minimum per subcatchment upstream mean daily minimum air temperature (°C) of the coldest month (HydroClim) within the analysis cell (1 ha)
Latvian name: Sateces apakšbaseina minimālā augšteces dienas vidējā gaisa temperatūra vēsākajā mēnesī (°C) (HydroClim) analīzes šūnā (1 ha)
Procedure: Information - both basins and raster layers - from HydroClim data
is used. First, basin CRS is transformed to epsg:3059. Then zonal statistics (per basin) with
layer specific summary function - min - are calculated (exactextractr::exact_extract()
)
and then rasterized with egvtools::polygon2input()
. Once rasterized to input data,
EGV is created with egvtools::input2egv()
. To prevent from gaps at the edges,
inderse distance weighted (power = 2) gap filling is implemented. To save disk space,
intermediate input layer is unlinked.
Code
# libs ----
if(!require(egvtools)) {remotes::install_github("aavotins/egvtools"); require(egvtools)}
if(!require(terra)) {install.packages("terra"); require(terra)}
if(!require(tidyverse)) {install.packages("tidyverse"); require(tidyverse)}
if(!require(sf)) {install.packages("sf"); require(sf)}
if(!require(sfarrow)) {install.packages("sfarrow"); require(sfarrow)}
if(!require(exactextractr)) {install.packages("exactextractr"); require(exactextractr)}
# basins ----
level12=st_read("./Geodata/2024/HydroClim/hybas_lake_eu_lev01-12_v1c/hybas_lake_eu_lev12_v1c.shp")
grid_1km=sfarrow::st_read_parquet("./Templates/TemplateGrids/tikls1km_sauzeme.parquet")
grid_1km=st_transform(grid_1km,crs=3059)
level12=st_transform(level12,crs=3059)
level12=level12[grid_1km,,]
level12=st_make_valid(level12)
# job ----
localname="HydroClim_06-min_cell.tif"
layername="egv_75"
summary_function="min"
slanis=rast(paste0("./Geodata/2024/HydroClim/",localname))
level12$Hydro_values=exact_extract(slanis,level12,fun=summary_function)
polygon2input(vector_data = level12,
template_path = "./Templates/TemplateRasters/LV10m_10km.tif",
out_path = "./RasterGrids_10m/2024/",
file_name = localname,
value_field = "Hydro_values",
fun="first",
value_type = "continuous",
prepare=FALSE,
project_mode = "auto",
check_na = FALSE,
plot_result=FALSE,
plot_gaps = FALSE,
overwrite=TRUE)
egvrez=input2egv(input=paste0("./RasterGrids_10m/2024/",localname),
egv_template= "./Templates/TemplateRasters/LV100m_10km.tif",
summary_function = "average",
missing_job = "FillOutput",
input_template = "./Templates/TemplateRasters/LV10m_10km.tif",
outlocation = "./RasterGrids_100m/2024/RAW/",
outfilename = localname,
layername = layername,
idw_weight = 2,
plot_gaps = FALSE,plot_final = FALSE)
egvrez
unlink(paste0("./RasterGrids_10m/2024/",localname))
6.76 HydroClim_07-max_cell
filename: HydroClim_07-max_cell.tif
layername: egv_76
English name: Maximum per subcatchment upstream annual range of air temperature (°C) (HydroClim) within the analysis cell (1 ha)
Latvian name: Sateces apakšbaseina maksimālā augšteces gada gaisa temperatūru amplitūda (°C) (HydroClim) analīzes šūnā (1 ha)
Procedure: Information - both basins and raster layers - from HydroClim data
is used. First, basin CRS is transformed to epsg:3059. Then zonal statistics (per basin) with
layer specific summary function - max - are calculated (exactextractr::exact_extract()
)
and then rasterized with egvtools::polygon2input()
. Once rasterized to input data,
EGV is created with egvtools::input2egv()
. To prevent from gaps at the edges,
inderse distance weighted (power = 2) gap filling is implemented. To save disk space,
intermediate input layer is unlinked.
Code
# libs ----
if(!require(egvtools)) {remotes::install_github("aavotins/egvtools"); require(egvtools)}
if(!require(terra)) {install.packages("terra"); require(terra)}
if(!require(tidyverse)) {install.packages("tidyverse"); require(tidyverse)}
if(!require(sf)) {install.packages("sf"); require(sf)}
if(!require(sfarrow)) {install.packages("sfarrow"); require(sfarrow)}
if(!require(exactextractr)) {install.packages("exactextractr"); require(exactextractr)}
# basins ----
level12=st_read("./Geodata/2024/HydroClim/hybas_lake_eu_lev01-12_v1c/hybas_lake_eu_lev12_v1c.shp")
grid_1km=sfarrow::st_read_parquet("./Templates/TemplateGrids/tikls1km_sauzeme.parquet")
grid_1km=st_transform(grid_1km,crs=3059)
level12=st_transform(level12,crs=3059)
level12=level12[grid_1km,,]
level12=st_make_valid(level12)
# job ----
localname="HydroClim_07-max_cell.tif"
layername="egv_76"
summary_function="max"
slanis=rast(paste0("./Geodata/2024/HydroClim/",localname))
level12$Hydro_values=exact_extract(slanis,level12,fun=summary_function)
polygon2input(vector_data = level12,
template_path = "./Templates/TemplateRasters/LV10m_10km.tif",
out_path = "./RasterGrids_10m/2024/",
file_name = localname,
value_field = "Hydro_values",
fun="first",
value_type = "continuous",
prepare=FALSE,
project_mode = "auto",
check_na = FALSE,
plot_result=FALSE,
plot_gaps = FALSE,
overwrite=TRUE)
egvrez=input2egv(input=paste0("./RasterGrids_10m/2024/",localname),
egv_template= "./Templates/TemplateRasters/LV100m_10km.tif",
summary_function = "average",
missing_job = "FillOutput",
input_template = "./Templates/TemplateRasters/LV10m_10km.tif",
outlocation = "./RasterGrids_100m/2024/RAW/",
outfilename = localname,
layername = layername,
idw_weight = 2,
plot_gaps = FALSE,plot_final = FALSE)
egvrez
unlink(paste0("./RasterGrids_10m/2024/",localname))
6.77 HydroClim_08-max_cell
filename: HydroClim_08-max_cell.tif
layername: egv_77
English name: Maximum per subcatchment upstream mean daily mean air temperatures (°C) of the wettest quarter (HydroClim) within the analysis cell (1 ha)
Latvian name: Sateces apakšbaseina maksimālā augšteces dienas vidējā gaisa temperatūra mitrākajā ceturksnī (°C) (HydroClim) analīzes šūnā (1 ha)
Procedure: Information - both basins and raster layers - from HydroClim data
is used. First, basin CRS is transformed to epsg:3059. Then zonal statistics (per basin) with
layer specific summary function - max - are calculated (exactextractr::exact_extract()
)
and then rasterized with egvtools::polygon2input()
. Once rasterized to input data,
EGV is created with egvtools::input2egv()
. To prevent from gaps at the edges,
inderse distance weighted (power = 2) gap filling is implemented. To save disk space,
intermediate input layer is unlinked.
Code
# libs ----
if(!require(egvtools)) {remotes::install_github("aavotins/egvtools"); require(egvtools)}
if(!require(terra)) {install.packages("terra"); require(terra)}
if(!require(tidyverse)) {install.packages("tidyverse"); require(tidyverse)}
if(!require(sf)) {install.packages("sf"); require(sf)}
if(!require(sfarrow)) {install.packages("sfarrow"); require(sfarrow)}
if(!require(exactextractr)) {install.packages("exactextractr"); require(exactextractr)}
# basins ----
level12=st_read("./Geodata/2024/HydroClim/hybas_lake_eu_lev01-12_v1c/hybas_lake_eu_lev12_v1c.shp")
grid_1km=sfarrow::st_read_parquet("./Templates/TemplateGrids/tikls1km_sauzeme.parquet")
grid_1km=st_transform(grid_1km,crs=3059)
level12=st_transform(level12,crs=3059)
level12=level12[grid_1km,,]
level12=st_make_valid(level12)
# job ----
localname="HydroClim_08-max_cell.tif"
layername="egv_77"
summary_function="max"
slanis=rast(paste0("./Geodata/2024/HydroClim/",localname))
level12$Hydro_values=exact_extract(slanis,level12,fun=summary_function)
polygon2input(vector_data = level12,
template_path = "./Templates/TemplateRasters/LV10m_10km.tif",
out_path = "./RasterGrids_10m/2024/",
file_name = localname,
value_field = "Hydro_values",
fun="first",
value_type = "continuous",
prepare=FALSE,
project_mode = "auto",
check_na = FALSE,
plot_result=FALSE,
plot_gaps = FALSE,
overwrite=TRUE)
egvrez=input2egv(input=paste0("./RasterGrids_10m/2024/",localname),
egv_template= "./Templates/TemplateRasters/LV100m_10km.tif",
summary_function = "average",
missing_job = "FillOutput",
input_template = "./Templates/TemplateRasters/LV10m_10km.tif",
outlocation = "./RasterGrids_100m/2024/RAW/",
outfilename = localname,
layername = layername,
idw_weight = 2,
plot_gaps = FALSE,plot_final = FALSE)
egvrez
unlink(paste0("./RasterGrids_10m/2024/",localname))
6.78 HydroClim_09-min_cell
filename: HydroClim_09-min_cell.tif
layername: egv_78
English name: Minimum per subcatchment upstream mean daily mean air temperatures (°C) of the driest quarter (HydroClim) within the analysis cell (1 ha)
Latvian name: Sateces apakšbaseina maksimālā augšteces dienas vidējā gaisa temperatūra sausākajā ceturksnī (°C) (HydroClim) analīzes šūnā (1 ha)
Procedure: Information - both basins and raster layers - from HydroClim data
is used. First, basin CRS is transformed to epsg:3059. Then zonal statistics (per basin) with
layer specific summary function - min - are calculated (exactextractr::exact_extract()
)
and then rasterized with egvtools::polygon2input()
. Once rasterized to input data,
EGV is created with egvtools::input2egv()
. To prevent from gaps at the edges,
inderse distance weighted (power = 2) gap filling is implemented. To save disk space,
intermediate input layer is unlinked.
Code
# libs ----
if(!require(egvtools)) {remotes::install_github("aavotins/egvtools"); require(egvtools)}
if(!require(terra)) {install.packages("terra"); require(terra)}
if(!require(tidyverse)) {install.packages("tidyverse"); require(tidyverse)}
if(!require(sf)) {install.packages("sf"); require(sf)}
if(!require(sfarrow)) {install.packages("sfarrow"); require(sfarrow)}
if(!require(exactextractr)) {install.packages("exactextractr"); require(exactextractr)}
# basins ----
level12=st_read("./Geodata/2024/HydroClim/hybas_lake_eu_lev01-12_v1c/hybas_lake_eu_lev12_v1c.shp")
grid_1km=sfarrow::st_read_parquet("./Templates/TemplateGrids/tikls1km_sauzeme.parquet")
grid_1km=st_transform(grid_1km,crs=3059)
level12=st_transform(level12,crs=3059)
level12=level12[grid_1km,,]
level12=st_make_valid(level12)
# job ----
localname="HydroClim_09-min_cell.tif"
layername="egv_78"
summary_function="min"
slanis=rast(paste0("./Geodata/2024/HydroClim/",localname))
level12$Hydro_values=exact_extract(slanis,level12,fun=summary_function)
polygon2input(vector_data = level12,
template_path = "./Templates/TemplateRasters/LV10m_10km.tif",
out_path = "./RasterGrids_10m/2024/",
file_name = localname,
value_field = "Hydro_values",
fun="first",
value_type = "continuous",
prepare=FALSE,
project_mode = "auto",
check_na = FALSE,
plot_result=FALSE,
plot_gaps = FALSE,
overwrite=TRUE)
egvrez=input2egv(input=paste0("./RasterGrids_10m/2024/",localname),
egv_template= "./Templates/TemplateRasters/LV100m_10km.tif",
summary_function = "average",
missing_job = "FillOutput",
input_template = "./Templates/TemplateRasters/LV10m_10km.tif",
outlocation = "./RasterGrids_100m/2024/RAW/",
outfilename = localname,
layername = layername,
idw_weight = 2,
plot_gaps = FALSE,plot_final = FALSE)
egvrez
unlink(paste0("./RasterGrids_10m/2024/",localname))
6.79 HydroClim_10-max_cell
filename: HydroClim_10-max_cell.tif
layername: egv_79
English name: Maximum per subcatchment upstream mean daily mean air temperatures (°C) of the warmest quarter (HydroClim) within the analysis cell (1 ha)
Latvian name: Sateces apakšbaseina maksimālā augšteces dienas vidējā gaisa temperatūra siltākajā ceturksnī (°C) (HydroClim) analīzes šūnā (1 ha)
Procedure: Information - both basins and raster layers - from HydroClim data
is used. First, basin CRS is transformed to epsg:3059. Then zonal statistics (per basin) with
layer specific summary function - max - are calculated (exactextractr::exact_extract()
)
and then rasterized with egvtools::polygon2input()
. Once rasterized to input data,
EGV is created with egvtools::input2egv()
. To prevent from gaps at the edges,
inderse distance weighted (power = 2) gap filling is implemented. To save disk space,
intermediate input layer is unlinked.
Code
# libs ----
if(!require(egvtools)) {remotes::install_github("aavotins/egvtools"); require(egvtools)}
if(!require(terra)) {install.packages("terra"); require(terra)}
if(!require(tidyverse)) {install.packages("tidyverse"); require(tidyverse)}
if(!require(sf)) {install.packages("sf"); require(sf)}
if(!require(sfarrow)) {install.packages("sfarrow"); require(sfarrow)}
if(!require(exactextractr)) {install.packages("exactextractr"); require(exactextractr)}
# basins ----
level12=st_read("./Geodata/2024/HydroClim/hybas_lake_eu_lev01-12_v1c/hybas_lake_eu_lev12_v1c.shp")
grid_1km=sfarrow::st_read_parquet("./Templates/TemplateGrids/tikls1km_sauzeme.parquet")
grid_1km=st_transform(grid_1km,crs=3059)
level12=st_transform(level12,crs=3059)
level12=level12[grid_1km,,]
level12=st_make_valid(level12)
# job ----
localname="HydroClim_10-max_cell.tif"
layername="egv_79"
summary_function="max"
slanis=rast(paste0("./Geodata/2024/HydroClim/",localname))
level12$Hydro_values=exact_extract(slanis,level12,fun=summary_function)
polygon2input(vector_data = level12,
template_path = "./Templates/TemplateRasters/LV10m_10km.tif",
out_path = "./RasterGrids_10m/2024/",
file_name = localname,
value_field = "Hydro_values",
fun="first",
value_type = "continuous",
prepare=FALSE,
project_mode = "auto",
check_na = FALSE,
plot_result=FALSE,
plot_gaps = FALSE,
overwrite=TRUE)
egvrez=input2egv(input=paste0("./RasterGrids_10m/2024/",localname),
egv_template= "./Templates/TemplateRasters/LV100m_10km.tif",
summary_function = "average",
missing_job = "FillOutput",
input_template = "./Templates/TemplateRasters/LV10m_10km.tif",
outlocation = "./RasterGrids_100m/2024/RAW/",
outfilename = localname,
layername = layername,
idw_weight = 2,
plot_gaps = FALSE,plot_final = FALSE)
egvrez
unlink(paste0("./RasterGrids_10m/2024/",localname))
6.80 HydroClim_11-min_cell
filename: HydroClim_11-min_cell.tif
layername: egv_80
English name: Minimum per subcatchment upstream mean daily mean air temperatures (°C) of the coldest quarter (HydroClim) within the analysis cell (1 ha)
Latvian name: Sateces apakšbaseina maksimālā augšteces dienas vidējā gaisa temperatūra vēsākajā ceturksnī (°C) (HydroClim) analīzes šūnā (1 ha)
Procedure: Information - both basins and raster layers - from HydroClim data
is used. First, basin CRS is transformed to epsg:3059. Then zonal statistics (per basin) with
layer specific summary function - min - are calculated (exactextractr::exact_extract()
)
and then rasterized with egvtools::polygon2input()
. Once rasterized to input data,
EGV is created with egvtools::input2egv()
. To prevent from gaps at the edges,
inderse distance weighted (power = 2) gap filling is implemented. To save disk space,
intermediate input layer is unlinked.
Code
# libs ----
if(!require(egvtools)) {remotes::install_github("aavotins/egvtools"); require(egvtools)}
if(!require(terra)) {install.packages("terra"); require(terra)}
if(!require(tidyverse)) {install.packages("tidyverse"); require(tidyverse)}
if(!require(sf)) {install.packages("sf"); require(sf)}
if(!require(sfarrow)) {install.packages("sfarrow"); require(sfarrow)}
if(!require(exactextractr)) {install.packages("exactextractr"); require(exactextractr)}
# basins ----
level12=st_read("./Geodata/2024/HydroClim/hybas_lake_eu_lev01-12_v1c/hybas_lake_eu_lev12_v1c.shp")
grid_1km=sfarrow::st_read_parquet("./Templates/TemplateGrids/tikls1km_sauzeme.parquet")
grid_1km=st_transform(grid_1km,crs=3059)
level12=st_transform(level12,crs=3059)
level12=level12[grid_1km,,]
level12=st_make_valid(level12)
# job ----
localname="HydroClim_11-min_cell.tif"
layername="egv_80"
summary_function="min"
slanis=rast(paste0("./Geodata/2024/HydroClim/",localname))
level12$Hydro_values=exact_extract(slanis,level12,fun=summary_function)
polygon2input(vector_data = level12,
template_path = "./Templates/TemplateRasters/LV10m_10km.tif",
out_path = "./RasterGrids_10m/2024/",
file_name = localname,
value_field = "Hydro_values",
fun="first",
value_type = "continuous",
prepare=FALSE,
project_mode = "auto",
check_na = FALSE,
plot_result=FALSE,
plot_gaps = FALSE,
overwrite=TRUE)
egvrez=input2egv(input=paste0("./RasterGrids_10m/2024/",localname),
egv_template= "./Templates/TemplateRasters/LV100m_10km.tif",
summary_function = "average",
missing_job = "FillOutput",
input_template = "./Templates/TemplateRasters/LV10m_10km.tif",
outlocation = "./RasterGrids_100m/2024/RAW/",
outfilename = localname,
layername = layername,
idw_weight = 2,
plot_gaps = FALSE,plot_final = FALSE)
egvrez
unlink(paste0("./RasterGrids_10m/2024/",localname))
6.81 HydroClim_12-max_cell
filename: HydroClim_12-max_cell.tif
layername: egv_81
English name: Maximum per subcatchment upstream annual precipitation amount (kg m⁻² year⁻¹) (HydroClim) within the analysis cell (1 ha)
Latvian name: Sateces apakšbaseina maksimālais augšteces nokrišņu daudzums gadā (kg m⁻² year⁻¹) (HydroClim) analīzes šūnā (1 ha)
Procedure: Information - both basins and raster layers - from HydroClim data
is used. First, basin CRS is transformed to epsg:3059. Then zonal statistics (per basin) with
layer specific summary function - max - are calculated (exactextractr::exact_extract()
)
and then rasterized with egvtools::polygon2input()
. Once rasterized to input data,
EGV is created with egvtools::input2egv()
. To prevent from gaps at the edges,
inderse distance weighted (power = 2) gap filling is implemented. To save disk space,
intermediate input layer is unlinked.
Code
# libs ----
if(!require(egvtools)) {remotes::install_github("aavotins/egvtools"); require(egvtools)}
if(!require(terra)) {install.packages("terra"); require(terra)}
if(!require(tidyverse)) {install.packages("tidyverse"); require(tidyverse)}
if(!require(sf)) {install.packages("sf"); require(sf)}
if(!require(sfarrow)) {install.packages("sfarrow"); require(sfarrow)}
if(!require(exactextractr)) {install.packages("exactextractr"); require(exactextractr)}
# basins ----
level12=st_read("./Geodata/2024/HydroClim/hybas_lake_eu_lev01-12_v1c/hybas_lake_eu_lev12_v1c.shp")
grid_1km=sfarrow::st_read_parquet("./Templates/TemplateGrids/tikls1km_sauzeme.parquet")
grid_1km=st_transform(grid_1km,crs=3059)
level12=st_transform(level12,crs=3059)
level12=level12[grid_1km,,]
level12=st_make_valid(level12)
# job ----
localname="HydroClim_12-max_cell.tif"
layername="egv_81"
summary_function="max"
slanis=rast(paste0("./Geodata/2024/HydroClim/",localname))
level12$Hydro_values=exact_extract(slanis,level12,fun=summary_function)
polygon2input(vector_data = level12,
template_path = "./Templates/TemplateRasters/LV10m_10km.tif",
out_path = "./RasterGrids_10m/2024/",
file_name = localname,
value_field = "Hydro_values",
fun="first",
value_type = "continuous",
prepare=FALSE,
project_mode = "auto",
check_na = FALSE,
plot_result=FALSE,
plot_gaps = FALSE,
overwrite=TRUE)
egvrez=input2egv(input=paste0("./RasterGrids_10m/2024/",localname),
egv_template= "./Templates/TemplateRasters/LV100m_10km.tif",
summary_function = "average",
missing_job = "FillOutput",
input_template = "./Templates/TemplateRasters/LV10m_10km.tif",
outlocation = "./RasterGrids_100m/2024/RAW/",
outfilename = localname,
layername = layername,
idw_weight = 2,
plot_gaps = FALSE,plot_final = FALSE)
egvrez
unlink(paste0("./RasterGrids_10m/2024/",localname))
6.82 HydroClim_13-max_cell
filename: HydroClim_13-max_cell.tif
layername: egv_82
English name: Maximum per subcatchment upstream precipitation amount (kg m⁻² year⁻¹) of the wettest month (HydroClim) within the analysis cell (1 ha)
Latvian name: Sateces apakšbaseina maksimālais augšteces nokrišņu daudzums mitrākajā mēnesī (kg m⁻² year⁻¹) (HydroClim) analīzes šūnā (1 ha)
Procedure: Information - both basins and raster layers - from HydroClim data
is used. First, basin CRS is transformed to epsg:3059. Then zonal statistics (per basin) with
layer specific summary function - max - are calculated (exactextractr::exact_extract()
)
and then rasterized with egvtools::polygon2input()
. Once rasterized to input data,
EGV is created with egvtools::input2egv()
. To prevent from gaps at the edges,
inderse distance weighted (power = 2) gap filling is implemented. To save disk space,
intermediate input layer is unlinked.
Code
# libs ----
if(!require(egvtools)) {remotes::install_github("aavotins/egvtools"); require(egvtools)}
if(!require(terra)) {install.packages("terra"); require(terra)}
if(!require(tidyverse)) {install.packages("tidyverse"); require(tidyverse)}
if(!require(sf)) {install.packages("sf"); require(sf)}
if(!require(sfarrow)) {install.packages("sfarrow"); require(sfarrow)}
if(!require(exactextractr)) {install.packages("exactextractr"); require(exactextractr)}
# basins ----
level12=st_read("./Geodata/2024/HydroClim/hybas_lake_eu_lev01-12_v1c/hybas_lake_eu_lev12_v1c.shp")
grid_1km=sfarrow::st_read_parquet("./Templates/TemplateGrids/tikls1km_sauzeme.parquet")
grid_1km=st_transform(grid_1km,crs=3059)
level12=st_transform(level12,crs=3059)
level12=level12[grid_1km,,]
level12=st_make_valid(level12)
# job ----
localname="HydroClim_13-max_cell.tif"
layername="egv_82"
summary_function="max"
slanis=rast(paste0("./Geodata/2024/HydroClim/",localname))
level12$Hydro_values=exact_extract(slanis,level12,fun=summary_function)
polygon2input(vector_data = level12,
template_path = "./Templates/TemplateRasters/LV10m_10km.tif",
out_path = "./RasterGrids_10m/2024/",
file_name = localname,
value_field = "Hydro_values",
fun="first",
value_type = "continuous",
prepare=FALSE,
project_mode = "auto",
check_na = FALSE,
plot_result=FALSE,
plot_gaps = FALSE,
overwrite=TRUE)
egvrez=input2egv(input=paste0("./RasterGrids_10m/2024/",localname),
egv_template= "./Templates/TemplateRasters/LV100m_10km.tif",
summary_function = "average",
missing_job = "FillOutput",
input_template = "./Templates/TemplateRasters/LV10m_10km.tif",
outlocation = "./RasterGrids_100m/2024/RAW/",
outfilename = localname,
layername = layername,
idw_weight = 2,
plot_gaps = FALSE,plot_final = FALSE)
egvrez
unlink(paste0("./RasterGrids_10m/2024/",localname))
6.83 HydroClim_14-max_cell
filename: HydroClim_14-max_cell.tif
layername: egv_83
English name: Maximum per subcatchment upstream precipitation amount (kg m⁻² year⁻¹) of the driest month (HydroClim) within the analysis cell (1 ha)
Latvian name: Sateces apakšbaseina maksimālais augšteces nokrišņu daudzums sausākajā mēnesī (kg m⁻² year⁻¹) (HydroClim) analīzes šūnā (1 ha)
Procedure: Information - both basins and raster layers - from HydroClim data
is used. First, basin CRS is transformed to epsg:3059. Then zonal statistics (per basin) with
layer specific summary function - max - are calculated (exactextractr::exact_extract()
)
and then rasterized with egvtools::polygon2input()
. Once rasterized to input data,
EGV is created with egvtools::input2egv()
. To prevent from gaps at the edges,
inderse distance weighted (power = 2) gap filling is implemented. To save disk space,
intermediate input layer is unlinked.
Code
# libs ----
if(!require(egvtools)) {remotes::install_github("aavotins/egvtools"); require(egvtools)}
if(!require(terra)) {install.packages("terra"); require(terra)}
if(!require(tidyverse)) {install.packages("tidyverse"); require(tidyverse)}
if(!require(sf)) {install.packages("sf"); require(sf)}
if(!require(sfarrow)) {install.packages("sfarrow"); require(sfarrow)}
if(!require(exactextractr)) {install.packages("exactextractr"); require(exactextractr)}
# basins ----
level12=st_read("./Geodata/2024/HydroClim/hybas_lake_eu_lev01-12_v1c/hybas_lake_eu_lev12_v1c.shp")
grid_1km=sfarrow::st_read_parquet("./Templates/TemplateGrids/tikls1km_sauzeme.parquet")
grid_1km=st_transform(grid_1km,crs=3059)
level12=st_transform(level12,crs=3059)
level12=level12[grid_1km,,]
level12=st_make_valid(level12)
# job ----
localname="HydroClim_14-max_cell.tif"
layername="egv_83"
summary_function="max"
slanis=rast(paste0("./Geodata/2024/HydroClim/",localname))
level12$Hydro_values=exact_extract(slanis,level12,fun=summary_function)
polygon2input(vector_data = level12,
template_path = "./Templates/TemplateRasters/LV10m_10km.tif",
out_path = "./RasterGrids_10m/2024/",
file_name = localname,
value_field = "Hydro_values",
fun="first",
value_type = "continuous",
prepare=FALSE,
project_mode = "auto",
check_na = FALSE,
plot_result=FALSE,
plot_gaps = FALSE,
overwrite=TRUE)
egvrez=input2egv(input=paste0("./RasterGrids_10m/2024/",localname),
egv_template= "./Templates/TemplateRasters/LV100m_10km.tif",
summary_function = "average",
missing_job = "FillOutput",
input_template = "./Templates/TemplateRasters/LV10m_10km.tif",
outlocation = "./RasterGrids_100m/2024/RAW/",
outfilename = localname,
layername = layername,
idw_weight = 2,
plot_gaps = FALSE,plot_final = FALSE)
egvrez
unlink(paste0("./RasterGrids_10m/2024/",localname))
6.84 HydroClim_15-max_cell
filename: HydroClim_15-max_cell.tif
layername: egv_84
English name: Maximum per subcatchment upstream precipitation seasonality (kg m⁻²) (HydroClim) within the analysis cell (1 ha)
Latvian name: Sateces apakšbaseina maksimālais augšteces nokrišņu daudzuma sezonalitāte (kg m⁻²) (HydroClim) analīzes šūnā (1 ha)
Procedure: Information - both basins and raster layers - from HydroClim data
is used. First, basin CRS is transformed to epsg:3059. Then zonal statistics (per basin) with
layer specific summary function - max - are calculated (exactextractr::exact_extract()
)
and then rasterized with egvtools::polygon2input()
. Once rasterized to input data,
EGV is created with egvtools::input2egv()
. To prevent from gaps at the edges,
inderse distance weighted (power = 2) gap filling is implemented. To save disk space,
intermediate input layer is unlinked.
Code
# libs ----
if(!require(egvtools)) {remotes::install_github("aavotins/egvtools"); require(egvtools)}
if(!require(terra)) {install.packages("terra"); require(terra)}
if(!require(tidyverse)) {install.packages("tidyverse"); require(tidyverse)}
if(!require(sf)) {install.packages("sf"); require(sf)}
if(!require(sfarrow)) {install.packages("sfarrow"); require(sfarrow)}
if(!require(exactextractr)) {install.packages("exactextractr"); require(exactextractr)}
# basins ----
level12=st_read("./Geodata/2024/HydroClim/hybas_lake_eu_lev01-12_v1c/hybas_lake_eu_lev12_v1c.shp")
grid_1km=sfarrow::st_read_parquet("./Templates/TemplateGrids/tikls1km_sauzeme.parquet")
grid_1km=st_transform(grid_1km,crs=3059)
level12=st_transform(level12,crs=3059)
level12=level12[grid_1km,,]
level12=st_make_valid(level12)
# job ----
localname="HydroClim_15-max_cell.tif"
layername="egv_84"
summary_function="max"
slanis=rast(paste0("./Geodata/2024/HydroClim/",localname))
level12$Hydro_values=exact_extract(slanis,level12,fun=summary_function)
polygon2input(vector_data = level12,
template_path = "./Templates/TemplateRasters/LV10m_10km.tif",
out_path = "./RasterGrids_10m/2024/",
file_name = localname,
value_field = "Hydro_values",
fun="first",
value_type = "continuous",
prepare=FALSE,
project_mode = "auto",
check_na = FALSE,
plot_result=FALSE,
plot_gaps = FALSE,
overwrite=TRUE)
egvrez=input2egv(input=paste0("./RasterGrids_10m/2024/",localname),
egv_template= "./Templates/TemplateRasters/LV100m_10km.tif",
summary_function = "average",
missing_job = "FillOutput",
input_template = "./Templates/TemplateRasters/LV10m_10km.tif",
outlocation = "./RasterGrids_100m/2024/RAW/",
outfilename = localname,
layername = layername,
idw_weight = 2,
plot_gaps = FALSE,plot_final = FALSE)
egvrez
unlink(paste0("./RasterGrids_10m/2024/",localname))
6.85 HydroClim_16-max_cell
filename: HydroClim_16-max_cell.tif
layername: egv_85
English name: Maximum per subcatchment upstream mean monthly precipitation amount (kg m⁻² year⁻¹) of the wettest quarter (HydroClim) within the analysis cell (1 ha)
Latvian name: Sateces apakšbaseina maksimālais augšteces nokrišņu daudzums mitrākajā ceturksnī (kg m⁻² year⁻¹) (HydroClim) analīzes šūnā (1 ha)
Procedure: Information - both basins and raster layers - from HydroClim data
is used. First, basin CRS is transformed to epsg:3059. Then zonal statistics (per basin) with
layer specific summary function - max - are calculated (exactextractr::exact_extract()
)
and then rasterized with egvtools::polygon2input()
. Once rasterized to input data,
EGV is created with egvtools::input2egv()
. To prevent from gaps at the edges,
inderse distance weighted (power = 2) gap filling is implemented. To save disk space,
intermediate input layer is unlinked.
Code
# libs ----
if(!require(egvtools)) {remotes::install_github("aavotins/egvtools"); require(egvtools)}
if(!require(terra)) {install.packages("terra"); require(terra)}
if(!require(tidyverse)) {install.packages("tidyverse"); require(tidyverse)}
if(!require(sf)) {install.packages("sf"); require(sf)}
if(!require(sfarrow)) {install.packages("sfarrow"); require(sfarrow)}
if(!require(exactextractr)) {install.packages("exactextractr"); require(exactextractr)}
# basins ----
level12=st_read("./Geodata/2024/HydroClim/hybas_lake_eu_lev01-12_v1c/hybas_lake_eu_lev12_v1c.shp")
grid_1km=sfarrow::st_read_parquet("./Templates/TemplateGrids/tikls1km_sauzeme.parquet")
grid_1km=st_transform(grid_1km,crs=3059)
level12=st_transform(level12,crs=3059)
level12=level12[grid_1km,,]
level12=st_make_valid(level12)
# job ----
localname="HydroClim_16-max_cell.tif"
layername="egv_85"
summary_function="max"
slanis=rast(paste0("./Geodata/2024/HydroClim/",localname))
level12$Hydro_values=exact_extract(slanis,level12,fun=summary_function)
polygon2input(vector_data = level12,
template_path = "./Templates/TemplateRasters/LV10m_10km.tif",
out_path = "./RasterGrids_10m/2024/",
file_name = localname,
value_field = "Hydro_values",
fun="first",
value_type = "continuous",
prepare=FALSE,
project_mode = "auto",
check_na = FALSE,
plot_result=FALSE,
plot_gaps = FALSE,
overwrite=TRUE)
egvrez=input2egv(input=paste0("./RasterGrids_10m/2024/",localname),
egv_template= "./Templates/TemplateRasters/LV100m_10km.tif",
summary_function = "average",
missing_job = "FillOutput",
input_template = "./Templates/TemplateRasters/LV10m_10km.tif",
outlocation = "./RasterGrids_100m/2024/RAW/",
outfilename = localname,
layername = layername,
idw_weight = 2,
plot_gaps = FALSE,plot_final = FALSE)
egvrez
unlink(paste0("./RasterGrids_10m/2024/",localname))
6.86 HydroClim_17-max_cell
filename: HydroClim_17-max_cell.tif
layername: egv_86
English name: Maximum per subcatchment upstream mean monthly precipitation amount (kg m⁻² year⁻¹) of the driest quarter (HydroClim) within the analysis cell (1 ha)
Latvian name: Sateces apakšbaseina maksimālais augšteces nokrišņu daudzums sausākajā ceturksnī (kg m⁻² year⁻¹) (HydroClim) analīzes šūnā (1 ha)
Procedure: Information - both basins and raster layers - from HydroClim data
is used. First, basin CRS is transformed to epsg:3059. Then zonal statistics (per basin) with
layer specific summary function - max - are calculated (exactextractr::exact_extract()
)
and then rasterized with egvtools::polygon2input()
. Once rasterized to input data,
EGV is created with egvtools::input2egv()
. To prevent from gaps at the edges,
inderse distance weighted (power = 2) gap filling is implemented. To save disk space,
intermediate input layer is unlinked.
Code
# libs ----
if(!require(egvtools)) {remotes::install_github("aavotins/egvtools"); require(egvtools)}
if(!require(terra)) {install.packages("terra"); require(terra)}
if(!require(tidyverse)) {install.packages("tidyverse"); require(tidyverse)}
if(!require(sf)) {install.packages("sf"); require(sf)}
if(!require(sfarrow)) {install.packages("sfarrow"); require(sfarrow)}
if(!require(exactextractr)) {install.packages("exactextractr"); require(exactextractr)}
# basins ----
level12=st_read("./Geodata/2024/HydroClim/hybas_lake_eu_lev01-12_v1c/hybas_lake_eu_lev12_v1c.shp")
grid_1km=sfarrow::st_read_parquet("./Templates/TemplateGrids/tikls1km_sauzeme.parquet")
grid_1km=st_transform(grid_1km,crs=3059)
level12=st_transform(level12,crs=3059)
level12=level12[grid_1km,,]
level12=st_make_valid(level12)
# job ----
localname="HydroClim_17-max_cell.tif"
layername="egv_86"
summary_function="max"
slanis=rast(paste0("./Geodata/2024/HydroClim/",localname))
level12$Hydro_values=exact_extract(slanis,level12,fun=summary_function)
polygon2input(vector_data = level12,
template_path = "./Templates/TemplateRasters/LV10m_10km.tif",
out_path = "./RasterGrids_10m/2024/",
file_name = localname,
value_field = "Hydro_values",
fun="first",
value_type = "continuous",
prepare=FALSE,
project_mode = "auto",
check_na = FALSE,
plot_result=FALSE,
plot_gaps = FALSE,
overwrite=TRUE)
egvrez=input2egv(input=paste0("./RasterGrids_10m/2024/",localname),
egv_template= "./Templates/TemplateRasters/LV100m_10km.tif",
summary_function = "average",
missing_job = "FillOutput",
input_template = "./Templates/TemplateRasters/LV10m_10km.tif",
outlocation = "./RasterGrids_100m/2024/RAW/",
outfilename = localname,
layername = layername,
idw_weight = 2,
plot_gaps = FALSE,plot_final = FALSE)
egvrez
unlink(paste0("./RasterGrids_10m/2024/",localname))
6.87 HydroClim_18-max_cell
filename: HydroClim_18-max_cell.tif
layername: egv_87
English name: Maximum per subcatchment upstream mean monthly precipitation amount (kg m⁻² year⁻¹) of the warmest quarter (HydroClim) within the analysis cell (1 ha)
Latvian name: Sateces apakšbaseina maksimālais augšteces nokrišņu daudzums siltākajā ceturksnī (kg m⁻² year⁻¹) (HydroClim) analīzes šūnā (1 ha)
Procedure: Information - both basins and raster layers - from HydroClim data
is used. First, basin CRS is transformed to epsg:3059. Then zonal statistics (per basin) with
layer specific summary function - max - are calculated (exactextractr::exact_extract()
)
and then rasterized with egvtools::polygon2input()
. Once rasterized to input data,
EGV is created with egvtools::input2egv()
. To prevent from gaps at the edges,
inderse distance weighted (power = 2) gap filling is implemented. To save disk space,
intermediate input layer is unlinked.
Code
# libs ----
if(!require(egvtools)) {remotes::install_github("aavotins/egvtools"); require(egvtools)}
if(!require(terra)) {install.packages("terra"); require(terra)}
if(!require(tidyverse)) {install.packages("tidyverse"); require(tidyverse)}
if(!require(sf)) {install.packages("sf"); require(sf)}
if(!require(sfarrow)) {install.packages("sfarrow"); require(sfarrow)}
if(!require(exactextractr)) {install.packages("exactextractr"); require(exactextractr)}
# basins ----
level12=st_read("./Geodata/2024/HydroClim/hybas_lake_eu_lev01-12_v1c/hybas_lake_eu_lev12_v1c.shp")
grid_1km=sfarrow::st_read_parquet("./Templates/TemplateGrids/tikls1km_sauzeme.parquet")
grid_1km=st_transform(grid_1km,crs=3059)
level12=st_transform(level12,crs=3059)
level12=level12[grid_1km,,]
level12=st_make_valid(level12)
# job ----
localname="HydroClim_18-max_cell.tif"
layername="egv_87"
summary_function="max"
slanis=rast(paste0("./Geodata/2024/HydroClim/",localname))
level12$Hydro_values=exact_extract(slanis,level12,fun=summary_function)
polygon2input(vector_data = level12,
template_path = "./Templates/TemplateRasters/LV10m_10km.tif",
out_path = "./RasterGrids_10m/2024/",
file_name = localname,
value_field = "Hydro_values",
fun="first",
value_type = "continuous",
prepare=FALSE,
project_mode = "auto",
check_na = FALSE,
plot_result=FALSE,
plot_gaps = FALSE,
overwrite=TRUE)
egvrez=input2egv(input=paste0("./RasterGrids_10m/2024/",localname),
egv_template= "./Templates/TemplateRasters/LV100m_10km.tif",
summary_function = "average",
missing_job = "FillOutput",
input_template = "./Templates/TemplateRasters/LV10m_10km.tif",
outlocation = "./RasterGrids_100m/2024/RAW/",
outfilename = localname,
layername = layername,
idw_weight = 2,
plot_gaps = FALSE,plot_final = FALSE)
egvrez
unlink(paste0("./RasterGrids_10m/2024/",localname))
6.88 HydroClim_19-max_cell
filename: HydroClim_19-max_cell.tif
layername: egv_88
English name: Maximum per subcatchment upstream mean monthly precipitation amount (kg m⁻² year⁻¹) of the coldest quarter (HydroClim) within the analysis cell (1 ha)
Latvian name: Sateces apakšbaseina maksimālais augšteces nokrišņu daudzums vēsākajā ceturksnī (kg m⁻² year⁻¹) (HydroClim) analīzes šūnā (1 ha)
Procedure: Information - both basins and raster layers - from HydroClim data
is used. First, basin CRS is transformed to epsg:3059. Then zonal statistics (per basin) with
layer specific summary function - max - are calculated (exactextractr::exact_extract()
)
and then rasterized with egvtools::polygon2input()
. Once rasterized to input data,
EGV is created with egvtools::input2egv()
. To prevent from gaps at the edges,
inderse distance weighted (power = 2) gap filling is implemented. To save disk space,
intermediate input layer is unlinked.
Code
# libs ----
if(!require(egvtools)) {remotes::install_github("aavotins/egvtools"); require(egvtools)}
if(!require(terra)) {install.packages("terra"); require(terra)}
if(!require(tidyverse)) {install.packages("tidyverse"); require(tidyverse)}
if(!require(sf)) {install.packages("sf"); require(sf)}
if(!require(sfarrow)) {install.packages("sfarrow"); require(sfarrow)}
if(!require(exactextractr)) {install.packages("exactextractr"); require(exactextractr)}
# basins ----
level12=st_read("./Geodata/2024/HydroClim/hybas_lake_eu_lev01-12_v1c/hybas_lake_eu_lev12_v1c.shp")
grid_1km=sfarrow::st_read_parquet("./Templates/TemplateGrids/tikls1km_sauzeme.parquet")
grid_1km=st_transform(grid_1km,crs=3059)
level12=st_transform(level12,crs=3059)
level12=level12[grid_1km,,]
level12=st_make_valid(level12)
# job ----
localname="HydroClim_19-max_cell.tif"
layername="egv_88"
summary_function="max"
slanis=rast(paste0("./Geodata/2024/HydroClim/",localname))
level12$Hydro_values=exact_extract(slanis,level12,fun=summary_function)
polygon2input(vector_data = level12,
template_path = "./Templates/TemplateRasters/LV10m_10km.tif",
out_path = "./RasterGrids_10m/2024/",
file_name = localname,
value_field = "Hydro_values",
fun="first",
value_type = "continuous",
prepare=FALSE,
project_mode = "auto",
check_na = FALSE,
plot_result=FALSE,
plot_gaps = FALSE,
overwrite=TRUE)
egvrez=input2egv(input=paste0("./RasterGrids_10m/2024/",localname),
egv_template= "./Templates/TemplateRasters/LV100m_10km.tif",
summary_function = "average",
missing_job = "FillOutput",
input_template = "./Templates/TemplateRasters/LV10m_10km.tif",
outlocation = "./RasterGrids_100m/2024/RAW/",
outfilename = localname,
layername = layername,
idw_weight = 2,
plot_gaps = FALSE,plot_final = FALSE)
egvrez
unlink(paste0("./RasterGrids_10m/2024/",localname))
6.89 Distance_Builtup_cell
filename: Distance_Builtup_cell.tif
layername: egv_89
English name: Distance to Built-Up features, average within the analysis cell (1 ha)
Latvian name: Attālums līdz apbūvei, vidējais analīzes šūnā (1 ha)
Procedure: Derived from Landscape classification with class 500
reclassified as 1 and others as 0. Processed with egvtools::distance2egv()
.
To protect against possible data loss at edge cells, inverse distance
weighted (power = 2) gap filling is implemented.
Code
# libs ----
if(!require(terra)) {install.packages("terra"); require(terra)}
if(!require(egvtools)) {remotes::install_github("aavotins/egvtools"); require(egvtools)}
# Distance_Builtup_cell.tif egv_89 ----
simple_landscape=rast("./RasterGrids_10m/2024/Ainava_vienk_mask.tif")
builtup=ifel(simple_landscape==500,1,0)
plot(builtup)
distegv=distance2egv(input = builtup,
template_egv = template100,
values_as_one = 1,
fill_gaps = TRUE, idw_weight = 2,
outlocation = "RasterGrids_100m/2024/RAW/",
outfilename = "Distance_Builtup_cell.tif",
layername = "egv_89")
distegv
plot(rast("RasterGrids_100m/2024/RAW/Distance_Builtup_cell.tif"))
rm(builtup)
rm(distegv)
6.90 Distance_ForestInside_cell
filename: Distance_ForestInside_cell.tif
layername: egv_90
English name: Distance to Forest Edge Inside Forests, average within the analysis cell (1 ha)
Latvian name: Attālums līdz meža malai tā iekšienē, vidējais analīzes šūnā (1 ha)
Procedure: Derived from Landscape classification with values in
a range from 630 to 700 reclassified as 0 and others as 1. Processed
with egvtools::distance2egv()
. To protect against possible data loss at
edge cells, inverse distance
weighted (power = 2) gap filling is implemented.
Code
# libs ----
if(!require(terra)) {install.packages("terra"); require(terra)}
if(!require(egvtools)) {remotes::install_github("aavotins/egvtools"); require(egvtools)}
# Distance_ForestInside_cell.tif egv_90 ----
simple_landscape=rast("./RasterGrids_10m/2024/Ainava_vienk_mask.tif")
trees_inside=ifel(simple_landscape>=630&simple_landscape<700,0,1)
plot(trees_inside)
distegv=distance2egv(input = trees_inside,
template_egv = template100,
values_as_one = 1,
fill_gaps = TRUE, idw_weight = 2,
outlocation = "RasterGrids_100m/2024/RAW/",
outfilename = "Distance_ForestInside_cell.tif",
layername = "egv_90")
distegv
plot(rast("RasterGrids_100m/2024/RAW/Distance_ForestInside_cell.tif"))
rm(trees_inside)
rm(distegv)
6.91 Distance_GrasslandPermanent_cell
filename: Distance_GrasslandPermanent_cell.tif
layername: egv_91
English name: Distance to Permanent Grasslands, average within the analysis cell (1 ha)
Latvian name: Attālums līdz ilggadīgiem zālājiem, vidējais analīzes šūnā (1 ha)
Procedure: Derived from Rural Support Service’s information on declared fields
with PRODUCT_CODE=="710"
classified as 1 and the rest of the country as 0. Processed
with egvtools::distance2egv()
. To protect against possible data loss at
edge cells, inverse distance weighted (power = 2) gap filling is implemented.
Code
# libs ----
if(!require(terra)) {install.packages("terra"); require(terra)}
if(!require(sf)) {install.packages("sf"); require(sf)}
if(!require(sfarrow)) {install.packages("sfarrow"); require(sfarrow)}
if(!require(tidyverse)) {install.packages("tidyverse"); require(tidyverse)}
if(!require(readxl)) {install.packages("readxl"); require(readxl)}
if(!require(raster)) {install.packages("raster"); require(raster)}
if(!require(fasterize)) {install.packages("fasterize"); require(fasterize)}
if(!require(egvtools)) {remotes::install_github("aavotins/egvtools"); require(egvtools)}
# templates ----
template10=rast("./Templates/TemplateRasters/LV10m_10km.tif")
nulls10=rast("./Templates/TemplateRasters/nulls_LV10m_10km.tif")
rastra_pamatne=raster(template10)
# Distance_GrasslandPermanent_cell.tif egv_91 ----
kodes=read_excel("./Geodata/2024/LAD/KulturuKodi_2024.xlsx")
lad=sfarrow::st_read_parquet("./Geodata/2024/LAD/Lauki_2024.parquet")
permgrass=lad %>%
filter(PRODUCT_CODE=="710") %>%
mutate(yes=1)
permgrass_r=fasterize(permgrass,rastra_pamatne,field="yes",fun="first")
permgrass_t=rast(permgrass_r)
permgrass_t2=cover(permgrass_t,nulls10)
plot(permgrass_t2)
distegv=distance2egv(input = permgrass_t2,
template_egv = template100,
values_as_one = 1,
fill_gaps = TRUE, idw_weight = 2,
outlocation = "RasterGrids_100m/2024/RAW/",
outfilename = "Distance_GrasslandPermanent_cell.tif",
layername = "egv_91")
distegv
plot(rast("RasterGrids_100m/2024/RAW/Distance_GrasslandPermanent_cell.tif"))
rm(distegv)
rm(kodes)
rm(lad)
rm(permgrass)
rm(permgrass_r)
rm(permgrass_t)
rm(permgrass_t2)
6.92 Distance_Landfill_cell
filename: Distance_Landfill_cell.tif
layername: egv_92
English name: Distance to Landfills, average within the analysis cell (1 ha)
Latvian name: Attālums līdz atkritumu poligoniem, vidējais analīzes šūnā (1 ha)
Procedure: Directly follows Waste and garbage disposal sites, landfills. 1. From the attachaed file read sheet “Poligoni”;
Create an
sf
object (epsg:3059);Rasterize and cover so that cells of interest are 1 and others are 0;
create an egv with
egvtools::distance2egv()
. Expect warning regarding nothing to do with aggregation. It is becauseegvtools::distance2egv()
already operate at egv-template not the input-template resolution. To protect against possible data loss at edge cells, inverse distance weighted (power = 2) gap filling is implemented.
Code
# libs ----
if(!require(terra)) {install.packages("terra"); require(terra)}
if(!require(sf)) {install.packages("sf"); require(sf)}
if(!require(tidyverse)) {install.packages("tidyverse"); require(tidyverse)}
if(!require(readxl)) {install.packages("readxl"); require(readxl)}
if(!require(egvtools)) {remotes::install_github("aavotins/egvtools"); require(egvtools)}
# templates ----
template100=rast("./Templates/TemplateRasters/LV100m_10km.tif")
nulls100=rast("./Templates/TemplateRasters/nulls_LV100m_10km.tif")
# Distance_Landfill_cell.tif egv_92 ----
# reading coordinates
landfills=read_excel("./Geodata/2024/GarbageWasteLandfills/Atkritumi.xlsx",sheet="Poligoni")
#sf object
landfills_sf=st_as_sf(landfills,coords=c("X","Y"),crs=3059)
# rasterize
landfills_rast=rasterize(landfills_sf,template100)
# raster to 1=Cell of interest, 0=background
landfills_bg=cover(landfills_rast,nulls100)
# create an egv
distegv=distance2egv(input = landfills_bg,
template_egv = template100,
values_as_one = 1,
fill_gaps = TRUE, idw_weight = 2,
outlocation = "RasterGrids_100m/2024/RAW/",
outfilename = "Distance_Landfill_cell.tif",
layername = "egv_92")
distegv
6.93 Distance_Sea_cell
filename: Distance_Sea_cell.tif
layername: egv_93
English name: Distance to Sea, average within the analysis cell (1 ha)
Latvian name: Attālums līdz jūrai, vidējais analīzes šūnā (1 ha)
Procedure: Directly follows Latvian Exclusive Economic Zone polygon.
1. Read layer as sf
object (it already is epsg:3059);
Rasterize and cover so that cells of interest are 1 and others are 0;
create an egv with
egvtools::distance2egv()
. {fasterize} does not write CRS withWKT
from epsg-string. Therefore it is better to useproject_to_template_input=TRUE
and define input-template. However, the only difference is in how the CRS is stored, therefore this can ignored - distance will be calculated on the input CRS and only resulting layer will be projected to match egv-template (faster due to 10x aggregation of resolution). To protect against possible data loss at edge cells, inverse distance weighted (power = 2) gap filling is implemented.
Code
# libs ----
if(!require(terra)) {install.packages("terra"); require(terra)}
if(!require(sf)) {install.packages("sf"); require(sf)}
if(!require(egvtools)) {remotes::install_github("aavotins/egvtools"); require(egvtools)}
if(!require(raster)) {install.packages("raster"); require(raster)}
if(!require(fasterize)) {install.packages("fasterize"); require(fasterize)}
# templates ----
template10=rast("./Templates/TemplateRasters/LV10m_10km.tif")
nulls10=rast("./Templates/TemplateRasters/nulls_LV10m_10km.tif")
rastrs10=raster::raster(template10)
# Distance_Sea_cell.tif egv_93 ----
# sea layer, sf
sea=st_read("./Geodata/2024/LV_EEZ/LV_EEZ.shp")
# quick rasterization
sea_r=fasterize(sea,rastrs10,field="LV_EEZ")
sea_rast=rast(sea_r)
# # raster to 1=Cell of interest, 0=background
sea_bg=cover(sea_rast,nulls10)
# create an egv
distegv=distance2egv(input = sea_bg,
template_egv = "./Templates/TemplateRasters/LV100m_10km.tif",
values_as_one = 1,
project_to_template_input=TRUE, # fasterize stores CRS differently
template_input=template10,
fill_gaps = TRUE, idw_weight = 2,
outlocation = "RasterGrids_100m/2024/RAW/",
outfilename = "Distance_Sea_cell.tif",
layername = "egv_93")
distegv
6.94 Distance_Trees_cell
filename: Distance_Trees_cell.tif
layername: egv_94
English name: Distance to Trees, average within the analysis cell (1 ha)
Latvian name: Attālums līdz kokiem, vidējais analīzes šūnā (1 ha)
Procedure: Derived from Landscape classification with values in
a range from 630 to 700 reclassified as 1 and others as 0. Processed
with egvtools::distance2egv()
. To protect against possible data loss at
edge cells, inverse distance
weighted (power = 2) gap filling is implemented.
Code
# libs ----
if(!require(terra)) {install.packages("terra"); require(terra)}
if(!require(egvtools)) {remotes::install_github("aavotins/egvtools"); require(egvtools)}
# Distance_Trees_cell.tif egv_94 ----
simple_landscape=rast("./RasterGrids_10m/2024/Ainava_vienk_mask.tif")
trees=ifel(simple_landscape>=630&simple_landscape<700,1,0)
plot(trees)
distegv=distance2egv(input = trees,
template_egv = template100,
values_as_one = 1,
fill_gaps = TRUE, idw_weight = 2,
outlocation = "RasterGrids_100m/2024/RAW/",
outfilename = "Distance_Trees_cell.tif",
layername = "egv_94")
distegv
plot(rast("RasterGrids_100m/2024/RAW/Distance_Trees_cell.tif"))
rm(trees)
rm(distegv)
6.95 Distance_Waste_cell
filename: Distance_Waste_cell.tif
layername: egv_95
English name: Distance to Waste disposal sites, average within the analysis cell (1 ha)
Latvian name: Attālums līdz atkritumu šķirošanas un uzglabāšanas vietām, vidējais analīzes šūnā (1 ha)
Procedure: Directly follows Waste and garbage disposal sites, landfills. 1. From the attachaed file read sheet “AtkritumuVietas” and clean names;
Create an
sf
object (epsg:3059);Filter to non-deposit collection locations;
Rasterize and cover so that cells of interest are 1 and others are 0;
create an egv with
egvtools::distance2egv()
. Expect warning regarding nothing to do with aggregation. It is becauseegvtools::distance2egv()
already operate at egv-template not the input-template resolution. To protect against possible data loss at edge cells, inverse distance weighted (power = 2) gap filling is implemented.
Code
# libs ----
if(!require(terra)) {install.packages("terra"); require(terra)}
if(!require(sf)) {install.packages("sf"); require(sf)}
if(!require(tidyverse)) {install.packages("tidyverse"); require(tidyverse)}
if(!require(readxl)) {install.packages("readxl"); require(readxl)}
if(!require(egvtools)) {remotes::install_github("aavotins/egvtools"); require(egvtools)}
# templates ----
template100=rast("./Templates/TemplateRasters/LV100m_10km.tif")
nulls100=rast("./Templates/TemplateRasters/nulls_LV100m_10km.tif")
# Distance_Waste_cell.tif egv_95 ----
# reading coordinates
waste=read_excel("./Geodata/2024/GarbageWasteLandfills/Atkritumi.xlsx",sheet="AtkritumuVietas")
# cleaning names
waste2=janitor::clean_names(waste)
#sf object
waste_sf=st_as_sf(waste2,coords=c("y_koordinata_lks92_tm","x_koordinata_lks92_tm"),crs=3059)
# filtering to non-deposit
table(waste_sf$pienemsanas_vietas_tips)
waste_sf2=waste_sf %>%
filter(!str_detect(pienemsanas_vietas_tips,"Depozīta"))
# rasterize
waste_rast=rasterize(waste_sf2,template100)
# raster to 1=Cell of interest, 0=background
wastw_bg=cover(waste_rast,nulls100)
# create an egv
distegv=distance2egv(input = wastw_bg,
template_egv = template100,
values_as_one = 1,
fill_gaps = TRUE, idw_weight = 2,
outlocation = "RasterGrids_100m/2024/RAW/",
outfilename = "Distance_Waste_cell.tif",
layername = "egv_95")
distegv
6.96 Distance_Water_cell
filename: Distance_Water_cell.tif
layername: egv_96
English name: Distance to Waterbodies, average within the analysis cell (1 ha)
Latvian name: Attālums līdz ūdenstilpēn, vidējais analīzes šūnā (1 ha)
Procedure: Derived from Landscape classification with class 200
reclassified as 1 and others as 0. Processed with egvtools::distance2egv()
.
To protect against possible data loss at edge cells, inverse distance
weighted (power = 2) gap filling is implemented.
Code
# libs ----
if(!require(terra)) {install.packages("terra"); require(terra)}
if(!require(egvtools)) {remotes::install_github("aavotins/egvtools"); require(egvtools)}
# Distance_Water_cell.tif egv_96 ----
simple_landscape=rast("./RasterGrids_10m/2024/Ainava_vienk_mask.tif")
water=ifel(simple_landscape==200,1,0)
plot(water)
distegv=distance2egv(input = water,
template_egv = template100,
values_as_one = 1,
fill_gaps = TRUE, idw_weight = 2,
outlocation = "RasterGrids_100m/2024/RAW/",
outfilename = "Distance_Water_cell.tif",
layername = "egv_96")
distegv
plot(rast("RasterGrids_100m/2024/RAW/Distance_Water_cell.tif"))
rm(water)
rm(distegv)
6.97 Distance_WaterInside_cell
filename: Distance_WaterInside_cell.tif
layername: egv_97
English name: Distance to Waterbody Edge Inside Waterbody, average within the analysis cell (1 ha)
Latvian name: Attālums līdz ūdenstilpes malai tās iekšienē, vidējais analīzes šūnā (1 ha)
Procedure: Derived from Landscape classification with class 200
reclassified as 0 and others as 1. Processed with egvtools::distance2egv()
.
To protect against possible data loss at edge cells, inverse distance
weighted (power = 2) gap filling is implemented.
Code
# libs ----
if(!require(terra)) {install.packages("terra"); require(terra)}
if(!require(egvtools)) {remotes::install_github("aavotins/egvtools"); require(egvtools)}
# Distance_WaterInside_cell.tif egv_97 ----
simple_landscape=rast("./RasterGrids_10m/2024/Ainava_vienk_mask.tif")
water_outside=ifel(simple_landscape==200,0,1)
plot(water_outside)
distegv=distance2egv(input = water_outside,
template_egv = template100,
values_as_one = 1,
fill_gaps = TRUE, idw_weight = 2,
outlocation = "RasterGrids_100m/2024/RAW/",
outfilename = "Distance_WaterInside_cell.tif",
layername = "egv_97")
distegv
plot(rast("RasterGrids_100m/2024/RAW/Distance_WaterInside_cell.tif"))
rm(water_outside)
rm(distegv)
6.98 Diversity_Farmland_r500
filename: Diversity_Farmland_r500.tif
layername: egv_98
English name: Average farmland class α-diversity of 500 m grid cells within the 0.5 km landscape
Latvian name: Vidējā lauku ainavas klašu 500 m šūnu α-daudzveidība 0.5 km ainavā
Procedure: Derived from Landscape diversity, more precisely
Farmland diversity. Average value of 25 ha
cells diversity index values calculated with egvtools::radius_function()
. To
guard against missing values at the edges, inverse distance wieghted (power = 2)
gap filling is allowed. File is written twice, to ensure layername.
Code
# Libs ----
if(!require(egvtools)) {remotes::install_github("aavotins/egvtools"); require(egvtools)}
if(!require(terra)) {install.packages("terra"); require(terra)}
# templates ----
template100=rast("./Templates/TemplateRasters/LV100m_10km.tif")
# radii
radius_function(
kvadrati_path = "./Templates/TemplateGrids/tiles/",
radii_path = "./Templates/TemplateGridPoints/tiles/",
tikls100_path = "./Templates/TemplateGrids/tikls100_sauzeme.parquet",
template_path = "./Templates/TemplateRasters/LV100m_10km.tif",
input_layers = c("./RasterGrids_500m/2024/Diversity_Farmland_500x.tif"),
layer_prefixes = c("Diversity_Farmland"),
output_dir = "./RasterGrids_100m/2024/RAW/",
n_workers = 12,
radii = c("r500"),
radius_mode = "sparse",
extract_fun = "mean",
fill_missing = TRUE,
IDW_weight = 2,
future_max_size = 5 * 1024^3)
# Diversity_Farmland_r500.tif egv_98
slanis=rast("./RasterGrids_100m/2024/RAW/Diversity_Farmland_r500.tif")
names(slanis)="egv_98"
slanis2=project(slanis,template100)
writeRaster(slanis2,
"./RasterGrids_100m/2024/RAW/Diversity_Farmland_r500.tif",
overwrite=TRUE)
6.99 Diversity_Farmland_r1250
filename: Diversity_Farmland_r1250.tif
layername: egv_99
English name: Average farmland class α-diversity of 500 m grid cells within the 1.25 km landscape
Latvian name: Vidējā lauku ainavas klašu 500 m šūnu α-daudzveidība 1.25 km ainavā
Procedure: Derived from Landscape diversity, more precisely
Farmland diversity. Average value of 25 ha
cells diversity index values calculated with egvtools::radius_function()
. To
guard against missing values at the edges, inverse distance wieghted (power = 2)
gap filling is allowed. File is written twice, to ensure layername.
Code
# Libs ----
if(!require(egvtools)) {remotes::install_github("aavotins/egvtools"); require(egvtools)}
if(!require(terra)) {install.packages("terra"); require(terra)}
# templates ----
template100=rast("./Templates/TemplateRasters/LV100m_10km.tif")
# radii
radius_function(
kvadrati_path = "./Templates/TemplateGrids/tiles/",
radii_path = "./Templates/TemplateGridPoints/tiles/",
tikls100_path = "./Templates/TemplateGrids/tikls100_sauzeme.parquet",
template_path = "./Templates/TemplateRasters/LV100m_10km.tif",
input_layers = c("./RasterGrids_500m/2024/Diversity_Farmland_500x.tif"),
layer_prefixes = c("Diversity_Farmland"),
output_dir = "./RasterGrids_100m/2024/RAW/",
n_workers = 12,
radii = c("r1250"),
radius_mode = "sparse",
extract_fun = "mean",
fill_missing = TRUE,
IDW_weight = 2,
future_max_size = 5 * 1024^3)
# Diversity_Farmland_r1250.tif egv_99
slanis=rast("./RasterGrids_100m/2024/RAW/Diversity_Farmland_r1250.tif")
names(slanis)="egv_99"
slanis2=project(slanis,template100)
writeRaster(slanis2,
"./RasterGrids_100m/2024/RAW/Diversity_Farmland_r1250.tif",
overwrite=TRUE)
6.100 Diversity_Farmland_r3000
filename: Diversity_Farmland_r3000.tif
layername: egv_100
English name: Average farmland class α-diversity of 500 m grid cells within the 3 km landscape
Latvian name: Vidējā lauku ainavas klašu 500 m šūnu α-daudzveidība 3 km ainavā
Procedure: Derived from Landscape diversity, more precisely
Farmland diversity. Average value of 25 ha
cells diversity index values calculated with egvtools::radius_function()
. To
guard against missing values at the edges, inverse distance wieghted (power = 2)
gap filling is allowed. File is written twice, to ensure layername.
Code
# Libs ----
if(!require(egvtools)) {remotes::install_github("aavotins/egvtools"); require(egvtools)}
if(!require(terra)) {install.packages("terra"); require(terra)}
# templates ----
template100=rast("./Templates/TemplateRasters/LV100m_10km.tif")
# radii
radius_function(
kvadrati_path = "./Templates/TemplateGrids/tiles/",
radii_path = "./Templates/TemplateGridPoints/tiles/",
tikls100_path = "./Templates/TemplateGrids/tikls100_sauzeme.parquet",
template_path = "./Templates/TemplateRasters/LV100m_10km.tif",
input_layers = c("./RasterGrids_500m/2024/Diversity_Farmland_500x.tif"),
layer_prefixes = c("Diversity_Farmland"),
output_dir = "./RasterGrids_100m/2024/RAW/",
n_workers = 12,
radii = c("r3000"),
radius_mode = "sparse",
extract_fun = "mean",
fill_missing = TRUE,
IDW_weight = 2,
future_max_size = 5 * 1024^3)
# Diversity_Farmland_r3000.tif egv_100
slanis=rast("./RasterGrids_100m/2024/RAW/Diversity_Farmland_r3000.tif")
names(slanis)="egv_100"
slanis2=project(slanis,template100)
writeRaster(slanis2,
"./RasterGrids_100m/2024/RAW/Diversity_Farmland_r3000.tif",
overwrite=TRUE)
6.101 Diversity_Farmland_r10000
filename: Diversity_Farmland_r10000.tif
layername: egv_101
English name: Average farmland class α-diversity of 500 m grid cells within the 10 km landscape
Latvian name: Vidējā lauku ainavas klašu 500 m šūnu α-daudzveidība 10 km ainavā
Procedure: Derived from Landscape diversity, more precisely
Farmland diversity. Average value of 25 ha
cells diversity index values calculated with egvtools::radius_function()
. To
guard against missing values at the edges, inverse distance wieghted (power = 2)
gap filling is allowed. File is written twice, to ensure layername.
Code
# Libs ----
if(!require(egvtools)) {remotes::install_github("aavotins/egvtools"); require(egvtools)}
if(!require(terra)) {install.packages("terra"); require(terra)}
# templates ----
template100=rast("./Templates/TemplateRasters/LV100m_10km.tif")
# radii
radius_function(
kvadrati_path = "./Templates/TemplateGrids/tiles/",
radii_path = "./Templates/TemplateGridPoints/tiles/",
tikls100_path = "./Templates/TemplateGrids/tikls100_sauzeme.parquet",
template_path = "./Templates/TemplateRasters/LV100m_10km.tif",
input_layers = c("./RasterGrids_500m/2024/Diversity_Farmland_500x.tif"),
layer_prefixes = c("Diversity_Farmland"),
output_dir = "./RasterGrids_100m/2024/RAW/",
n_workers = 12,
radii = c("r10000"),
radius_mode = "sparse",
extract_fun = "mean",
fill_missing = TRUE,
IDW_weight = 2,
future_max_size = 5 * 1024^3)
# Diversity_Farmland_r10000.tif egv_101
slanis=rast("./RasterGrids_100m/2024/RAW/Diversity_Farmland_r10000.tif")
names(slanis)="egv_101"
slanis2=project(slanis,template100)
writeRaster(slanis2,
"./RasterGrids_100m/2024/RAW/Diversity_Farmland_r10000.tif",
overwrite=TRUE)
6.102 Diversity_Forest_r500
filename: Diversity_Forest_r500.tif
layername: egv_102
English name: Average forest class α-diversity of 500 m grid cells within the 0.5 km landscape
Latvian name: Vidējā mežu ainavas klašu 500 m šūnu α-daudzveidība 0.5 km ainavā
Procedure: Derived from Landscape diversity, more precisely
Forest diversity. Average value of 25 ha
cells diversity index values calculated with egvtools::radius_function()
. To
guard against missing values at the edges, inverse distance wieghted (power = 2)
gap filling is allowed. File is written twice, to ensure layername.
Code
# Libs ----
if(!require(egvtools)) {remotes::install_github("aavotins/egvtools"); require(egvtools)}
if(!require(terra)) {install.packages("terra"); require(terra)}
# templates ----
template100=rast("./Templates/TemplateRasters/LV100m_10km.tif")
# radii
radius_function(
kvadrati_path = "./Templates/TemplateGrids/tiles/",
radii_path = "./Templates/TemplateGridPoints/tiles/",
tikls100_path = "./Templates/TemplateGrids/tikls100_sauzeme.parquet",
template_path = "./Templates/TemplateRasters/LV100m_10km.tif",
input_layers = c("./RasterGrids_500m/2024/Diversity_Forests_500x.tif"),
layer_prefixes = c("Diversity_Forest"),
output_dir = "./RasterGrids_100m/2024/RAW/",
n_workers = 12,
radii = c("r500"),
radius_mode = "sparse",
extract_fun = "mean",
fill_missing = TRUE,
IDW_weight = 2,
future_max_size = 5 * 1024^3)
# Diversity_Forest_r500.tif egv_102
slanis=rast("./RasterGrids_100m/2024/RAW/Diversity_Forest_r500.tif")
names(slanis)="egv_102"
slanis2=project(slanis,template100)
writeRaster(slanis2,
"./RasterGrids_100m/2024/RAW/Diversity_Forest_r500.tif",
overwrite=TRUE)
6.103 Diversity_Forest_r1250
filename: Diversity_Forest_r1250.tif
layername: egv_103
English name: Average forest class α-diversity of 500 m grid cells within the 1.25 km landscape
Latvian name: Vidējā mežu ainavas klašu 500 m šūnu α-daudzveidība 1.25 km ainavā
Procedure: Derived from Landscape diversity, more precisely
Forest diversity. Average value of 25 ha
cells diversity index values calculated with egvtools::radius_function()
. To
guard against missing values at the edges, inverse distance wieghted (power = 2)
gap filling is allowed. File is written twice, to ensure layername.
Code
# Libs ----
if(!require(egvtools)) {remotes::install_github("aavotins/egvtools"); require(egvtools)}
if(!require(terra)) {install.packages("terra"); require(terra)}
# templates ----
template100=rast("./Templates/TemplateRasters/LV100m_10km.tif")
# radii
radius_function(
kvadrati_path = "./Templates/TemplateGrids/tiles/",
radii_path = "./Templates/TemplateGridPoints/tiles/",
tikls100_path = "./Templates/TemplateGrids/tikls100_sauzeme.parquet",
template_path = "./Templates/TemplateRasters/LV100m_10km.tif",
input_layers = c("./RasterGrids_500m/2024/Diversity_Forests_500x.tif"),
layer_prefixes = c("Diversity_Forest"),
output_dir = "./RasterGrids_100m/2024/RAW/",
n_workers = 12,
radii = c("r1250"),
radius_mode = "sparse",
extract_fun = "mean",
fill_missing = TRUE,
IDW_weight = 2,
future_max_size = 5 * 1024^3)
# Diversity_Forest_r1250.tif egv_103
slanis=rast("./RasterGrids_100m/2024/RAW/Diversity_Forest_r1250.tif")
names(slanis)="egv_103"
slanis2=project(slanis,template100)
writeRaster(slanis2,
"./RasterGrids_100m/2024/RAW/Diversity_Forest_r1250.tif",
overwrite=TRUE)
6.104 Diversity_Forest_r3000
filename: Diversity_Forest_r3000.tif
layername: egv_104
English name: Average forest class α-diversity of 500 m grid cells within the 3 km landscape
Latvian name: Vidējā mežu ainavas klašu 500 m šūnu α-daudzveidība 3 km ainavā
Procedure: Derived from Landscape diversity, more precisely
Forest diversity. Average value of 25 ha
cells diversity index values calculated with egvtools::radius_function()
. To
guard against missing values at the edges, inverse distance wieghted (power = 2)
gap filling is allowed. File is written twice, to ensure layername.
Code
# Libs ----
if(!require(egvtools)) {remotes::install_github("aavotins/egvtools"); require(egvtools)}
if(!require(terra)) {install.packages("terra"); require(terra)}
# templates ----
template100=rast("./Templates/TemplateRasters/LV100m_10km.tif")
# radii
radius_function(
kvadrati_path = "./Templates/TemplateGrids/tiles/",
radii_path = "./Templates/TemplateGridPoints/tiles/",
tikls100_path = "./Templates/TemplateGrids/tikls100_sauzeme.parquet",
template_path = "./Templates/TemplateRasters/LV100m_10km.tif",
input_layers = c("./RasterGrids_500m/2024/Diversity_Forests_500x.tif"),
layer_prefixes = c("Diversity_Forest"),
output_dir = "./RasterGrids_100m/2024/RAW/",
n_workers = 12,
radii = c("r3000"),
radius_mode = "sparse",
extract_fun = "mean",
fill_missing = TRUE,
IDW_weight = 2,
future_max_size = 5 * 1024^3)
# Diversity_Forest_r3000.tif egv_104
slanis=rast("./RasterGrids_100m/2024/RAW/Diversity_Forest_r3000.tif")
names(slanis)="egv_104"
slanis2=project(slanis,template100)
writeRaster(slanis2,
"./RasterGrids_100m/2024/RAW/Diversity_Forest_r3000.tif",
overwrite=TRUE)
6.105 Diversity_Forest_r10000
filename: Diversity_Forest_r10000.tif
layername: egv_105
English name: Average forest class α-diversity of 500 m grid cells within the 10 km landscape
Latvian name: Vidējā mežu ainavas klašu 500 m šūnu α-daudzveidība 10 km ainavā
Procedure: Derived from Landscape diversity, more precisely
Forest diversity. Average value of 25 ha
cells diversity index values calculated with egvtools::radius_function()
. To
guard against missing values at the edges, inverse distance wieghted (power = 2)
gap filling is allowed. File is written twice, to ensure layername.
Code
# Libs ----
if(!require(egvtools)) {remotes::install_github("aavotins/egvtools"); require(egvtools)}
if(!require(terra)) {install.packages("terra"); require(terra)}
# templates ----
template100=rast("./Templates/TemplateRasters/LV100m_10km.tif")
# radii
radius_function(
kvadrati_path = "./Templates/TemplateGrids/tiles/",
radii_path = "./Templates/TemplateGridPoints/tiles/",
tikls100_path = "./Templates/TemplateGrids/tikls100_sauzeme.parquet",
template_path = "./Templates/TemplateRasters/LV100m_10km.tif",
input_layers = c("./RasterGrids_500m/2024/Diversity_Forests_500x.tif"),
layer_prefixes = c("Diversity_Forest"),
output_dir = "./RasterGrids_100m/2024/RAW/",
n_workers = 12,
radii = c("r10000"),
radius_mode = "sparse",
extract_fun = "mean",
fill_missing = TRUE,
IDW_weight = 2,
future_max_size = 5 * 1024^3)
# Diversity_Forest_r10000.tif egv_105
slanis=rast("./RasterGrids_100m/2024/RAW/Diversity_Forest_r10000.tif")
names(slanis)="egv_105"
slanis2=project(slanis,template100)
writeRaster(slanis2,
"./RasterGrids_100m/2024/RAW/Diversity_Forest_r10000.tif",
overwrite=TRUE)
6.106 Diversity_Total_r500
filename: Diversity_Total_r500.tif
layername: egv_106
English name: Average combined landscape α-diversity of 500 m grid cells within the 0.5 km landscape
Latvian name: Vidējā visu ainavas klašu 500 m šūnu α-daudzveidība 0.5 km ainavā
Procedure: Derived from Landscape diversity, more precisely
Landscape in general diversity. Average value of 25 ha
cells diversity index values calculated with egvtools::radius_function()
. To
guard against missing values at the edges, inverse distance wieghted (power = 2)
gap filling is allowed. File is written twice, to ensure layername.
Code
# Libs ----
if(!require(egvtools)) {remotes::install_github("aavotins/egvtools"); require(egvtools)}
if(!require(terra)) {install.packages("terra"); require(terra)}
# templates ----
template100=rast("./Templates/TemplateRasters/LV100m_10km.tif")
# radii
radius_function(
kvadrati_path = "./Templates/TemplateGrids/tiles/",
radii_path = "./Templates/TemplateGridPoints/tiles/",
tikls100_path = "./Templates/TemplateGrids/tikls100_sauzeme.parquet",
template_path = "./Templates/TemplateRasters/LV100m_10km.tif",
input_layers = c("./RasterGrids_500m/2024/Diversity_GeneralLandscape_500x.tif"),
layer_prefixes = c("Diversity_Total"),
output_dir = "./RasterGrids_100m/2024/RAW/",
n_workers = 12,
radii = c("r500"),
radius_mode = "sparse",
extract_fun = "mean",
fill_missing = TRUE,
IDW_weight = 2,
future_max_size = 5 * 1024^3)
# Diversity_Total_r500.tif egv_106
slanis=rast("./RasterGrids_100m/2024/RAW/Diversity_Total_r500.tif")
names(slanis)="egv_106"
slanis2=project(slanis,template100)
writeRaster(slanis2,
"./RasterGrids_100m/2024/RAW/Diversity_Total_r500.tif",
overwrite=TRUE)
6.107 Diversity_Total_r1250
filename: Diversity_Total_r1250.tif
layername: egv_107
English name: Average combined landscape α-diversity of 500 m grid cells within the 1.25 km landscape
Latvian name: Vidējā visu ainavas klašu 500 m šūnu α-daudzveidība 1.25 km ainavā
Procedure: Derived from Landscape diversity, more precisely
Landscape in general diversity. Average value of 25 ha
cells diversity index values calculated with egvtools::radius_function()
. To
guard against missing values at the edges, inverse distance wieghted (power = 2)
gap filling is allowed. File is written twice, to ensure layername.
Code
# Libs ----
if(!require(egvtools)) {remotes::install_github("aavotins/egvtools"); require(egvtools)}
if(!require(terra)) {install.packages("terra"); require(terra)}
# templates ----
template100=rast("./Templates/TemplateRasters/LV100m_10km.tif")
# radii
radius_function(
kvadrati_path = "./Templates/TemplateGrids/tiles/",
radii_path = "./Templates/TemplateGridPoints/tiles/",
tikls100_path = "./Templates/TemplateGrids/tikls100_sauzeme.parquet",
template_path = "./Templates/TemplateRasters/LV100m_10km.tif",
input_layers = c("./RasterGrids_500m/2024/Diversity_GeneralLandscape_500x.tif"),
layer_prefixes = c("Diversity_Total"),
output_dir = "./RasterGrids_100m/2024/RAW/",
n_workers = 12,
radii = c("r1250"),
radius_mode = "sparse",
extract_fun = "mean",
fill_missing = TRUE,
IDW_weight = 2,
future_max_size = 5 * 1024^3)
# Diversity_Total_r1250.tif egv_107
slanis=rast("./RasterGrids_100m/2024/RAW/Diversity_Total_r1250.tif")
names(slanis)="egv_107"
slanis2=project(slanis,template100)
writeRaster(slanis2,
"./RasterGrids_100m/2024/RAW/Diversity_Total_r1250.tif",
overwrite=TRUE)
6.108 Diversity_Total_r3000
filename: Diversity_Total_r3000.tif
layername: egv_108
English name: Average combined landscape α-diversity of 500 m grid cells within the 3 km landscape
Latvian name: Vidējā visu ainavas klašu 500 m šūnu α-daudzveidība 3 km ainavā
Procedure: Derived from Landscape diversity, more precisely
Landscape in general diversity. Average value of 25 ha
cells diversity index values calculated with egvtools::radius_function()
. To
guard against missing values at the edges, inverse distance wieghted (power = 2)
gap filling is allowed. File is written twice, to ensure layername.
Code
# Libs ----
if(!require(egvtools)) {remotes::install_github("aavotins/egvtools"); require(egvtools)}
if(!require(terra)) {install.packages("terra"); require(terra)}
# templates ----
template100=rast("./Templates/TemplateRasters/LV100m_10km.tif")
# radii
radius_function(
kvadrati_path = "./Templates/TemplateGrids/tiles/",
radii_path = "./Templates/TemplateGridPoints/tiles/",
tikls100_path = "./Templates/TemplateGrids/tikls100_sauzeme.parquet",
template_path = "./Templates/TemplateRasters/LV100m_10km.tif",
input_layers = c("./RasterGrids_500m/2024/Diversity_GeneralLandscape_500x.tif"),
layer_prefixes = c("Diversity_Total"),
output_dir = "./RasterGrids_100m/2024/RAW/",
n_workers = 12,
radii = c("r3000"),
radius_mode = "sparse",
extract_fun = "mean",
fill_missing = TRUE,
IDW_weight = 2,
future_max_size = 5 * 1024^3)
# Diversity_Total_r3000.tif egv_108
slanis=rast("./RasterGrids_100m/2024/RAW/Diversity_Total_r3000.tif")
names(slanis)="egv_108"
slanis2=project(slanis,template100)
writeRaster(slanis2,
"./RasterGrids_100m/2024/RAW/Diversity_Total_r3000.tif",
overwrite=TRUE)
6.109 Diversity_Total_r10000
filename: Diversity_Total_r10000.tif
layername: egv_109
English name: Average combined landscape α-diversity of 500 m grid cells within the 10 km landscape
Latvian name: Vidējā visu ainavas klašu 500 m šūnu α-daudzveidība 10 km ainavā
Procedure: Derived from Landscape diversity, more precisely
Landscape in general diversity. Average value of 25 ha
cells diversity index values calculated with egvtools::radius_function()
. To
guard against missing values at the edges, inverse distance wieghted (power = 2)
gap filling is allowed. File is written twice, to ensure layername.
Code
# Libs ----
if(!require(egvtools)) {remotes::install_github("aavotins/egvtools"); require(egvtools)}
if(!require(terra)) {install.packages("terra"); require(terra)}
# templates ----
template100=rast("./Templates/TemplateRasters/LV100m_10km.tif")
# radii
radius_function(
kvadrati_path = "./Templates/TemplateGrids/tiles/",
radii_path = "./Templates/TemplateGridPoints/tiles/",
tikls100_path = "./Templates/TemplateGrids/tikls100_sauzeme.parquet",
template_path = "./Templates/TemplateRasters/LV100m_10km.tif",
input_layers = c("./RasterGrids_500m/2024/Diversity_GeneralLandscape_500x.tif"),
layer_prefixes = c("Diversity_Total"),
output_dir = "./RasterGrids_100m/2024/RAW/",
n_workers = 12,
radii = c("r10000"),
radius_mode = "sparse",
extract_fun = "mean",
fill_missing = TRUE,
IDW_weight = 2,
future_max_size = 5 * 1024^3)
# Diversity_Total_r10000.tif egv_109
slanis=rast("./RasterGrids_100m/2024/RAW/Diversity_Total_r10000.tif")
names(slanis)="egv_109"
slanis2=project(slanis,template100)
writeRaster(slanis2,
"./RasterGrids_100m/2024/RAW/Diversity_Total_r10000.tif",
overwrite=TRUE)
6.110 Edges_Bogs-Trees_cell
filename: Edges_Bogs-Trees_cell.tif
layername: egv_110
English name: Edge pixels of Bogs, Mires bordering with Trees within the analysis cell (1 ha)
Latvian name: Purvu malu ar kokiem garums analīzes šūnā (1 ha)
Procedure:
6.111 Edges_Bogs-Trees_r500
filename: Edges_Bogs-Trees_r500.tif
layername: egv_111
English name: Edge pixels of Bogs, Mires bordering with Trees within the 0.5 km landscape
Latvian name: Purvu malu ar kokiem garums 0,5 km ainavā
Procedure:
6.112 Edges_Bogs-Trees_r1250
filename: Edges_Bogs-Trees_r1250.tif
layername: egv_112
English name: Edge pixels of Bogs, Mires bordering with Trees within the 1.25 km landscape
Latvian name: Purvu malu ar kokiem garums 1,25 km ainavā
Procedure:
6.113 Edges_Bogs-Trees_r3000
filename: Edges_Bogs-Trees_r3000.tif
layername: egv_113
English name: Edge pixels of Bogs, Mires bordering with Trees within the 3 km landscape
Latvian name: Purvu malu ar kokiem garums 3 km ainavā
Procedure:
6.114 Edges_Bogs-Trees_r10000
filename: Edges_Bogs-Trees_r10000.tif
layername: egv_114
English name: Edge pixels of Bogs, Mires bordering with Trees within the 10 km landscape
Latvian name: Purvu malu ar kokiem garums 10 km ainavā
Procedure:
6.115 Edges_Bogs-Water_cell
filename: Edges_Bogs-Water_cell.tif
layername: egv_115
English name: Edge pixels of Bogs, Mires bordering with Water within the analysis cell (1 ha)
Latvian name: Purvu malu ar ūdeni garums analīzes šūnā (1 ha)
Procedure:
6.116 Edges_Bogs-Water_r500
filename: Edges_Bogs-Water_r500.tif
layername: egv_116
English name: Edge pixels of Bogs, Mires bordering with Water within the 0.5 km landscape
Latvian name: Purvu malu ar ūdeni garums 0,5 km ainavā
Procedure:
6.117 Edges_Bogs-Water_r1250
filename: Edges_Bogs-Water_r1250.tif
layername: egv_117
English name: Edge pixels of Bogs, Mires bordering with Water within the 1.25 km landscape
Latvian name: Purvu malu ar ūdeni garums 1,25 km ainavā
Procedure:
6.118 Edges_Bogs-Water_r3000
filename: Edges_Bogs-Water_r3000.tif
layername: egv_118
English name: Edge pixels of Bogs, Mires bordering with Water within the 3 km landscape
Latvian name: Purvu malu ar ūdeni garums 3 km ainavā
Procedure:
6.119 Edges_Bogs-Water_r10000
filename: Edges_Bogs-Water_r10000.tif
layername: egv_119
English name: Edge pixels of Bogs, Mires bordering with Water within the 10 km landscape
Latvian name: Purvu malu ar ūdeni garums 10 km ainavā
Procedure:
6.120 Edges_Farmland-Builtup_cell
filename: Edges_Farmland-Builtup_cell.tif
layername: egv_120
English name: Edge pixels of Farmland bordering with Built-Up areas within the analysis cell (1 ha)
Latvian name: Lauksaimniecības zemju malu ar apbūvi garums analīzes šūnā (1 ha)
Procedure:
6.121 Edges_Farmland-Builtup_r500
filename: Edges_Farmland-Builtup_r500.tif
layername: egv_121
English name: Edge pixels of Farmland bordering with Built-Up areas within the 0.5 km landscape
Latvian name: Lauksaimniecības zemju malu ar apbūvi garums 0,5 km ainavā
Procedure:
6.122 Edges_Farmland-Builtup_r1250
filename: Edges_Farmland-Builtup_r1250.tif
layername: egv_122
English name: Edge pixels of Farmland bordering with Built-Up areas within the 1.25 km landscape
Latvian name: Lauksaimniecības zemju malu ar apbūvi garums 1,25 km ainavā
Procedure:
6.123 Edges_Farmland-Builtup_r3000
filename: Edges_Farmland-Builtup_r3000.tif
layername: egv_123
English name: Edge pixels of Farmland bordering with Built-Up areas within the 3 km landscape
Latvian name: Lauksaimniecības zemju malu ar apbūvi garums 3 km ainavā
Procedure:
6.124 Edges_Farmland-Builtup_r10000
filename: Edges_Farmland-Builtup_r10000.tif
layername: egv_124
English name: Edge pixels of Farmland bordering with Built-Up areas within the 10 km landscape
Latvian name: Lauksaimniecības zemju malu ar apbūvi garums 10 km ainavā
Procedure:
6.125 Edges_Trees-Builtup_cell
filename: Edges_Trees-Builtup_cell.tif
layername: egv_125
English name: Edge pixels of Trees bordering with Built-Up areas within the analysis cell (1 ha)
Latvian name: Koku malu ar apbūvi garums analīzes šūnā (1 ha)
Procedure:
6.126 Edges_Trees-Builtup_r500
filename: Edges_Trees-Builtup_r500.tif
layername: egv_126
English name: Edge pixels of Trees bordering with Built-Up areas within the 0.5 km landscape
Latvian name: Koku malu ar apbūvi garums 0,5 km ainavā
Procedure:
6.127 Edges_Trees-Builtup_r1250
filename: Edges_Trees-Builtup_r1250.tif
layername: egv_127
English name: Edge pixels of Trees bordering with Built-Up areas within the 1.25 km landscape
Latvian name: Koku malu ar apbūvi garums 1,25 km ainavā
Procedure:
6.128 Edges_Trees-Builtup_r3000
filename: Edges_Trees-Builtup_r3000.tif
layername: egv_128
English name: Edge pixels of Trees bordering with Built-Up areas within the 3 km landscape
Latvian name: Koku malu ar apbūvi garums 3 km ainavā
Procedure:
6.129 Edges_Trees-Builtup_r10000
filename: Edges_Trees-Builtup_r10000.tif
layername: egv_129
English name: Edge pixels of Trees bordering with Built-Up areas within the 10 km landscape
Latvian name: Koku malu ar apbūvi garums 10 km ainavā
Procedure:
6.130 Edges_CropsFallow_cell
filename: Edges_CropsFallow_cell.tif
layername: egv_130
English name: Edge pixels of Cropland, Fallow land within the analysis cell (1 ha)
Latvian name: Aramzemju malu garums analīzes šūnā (1 ha)
Procedure:
6.131 Edges_CropsFallow_r500
filename: Edges_CropsFallow_r500.tif
layername: egv_131
English name: Edge pixels of Cropland, Fallow land within the 0.5 km landscape
Latvian name: Aramzemju malu garums 0,5 km ainavā
Procedure:
6.132 Edges_CropsFallow_r1250
filename: Edges_CropsFallow_r1250.tif
layername: egv_132
English name: Edge pixels of Cropland, Fallow land within the 1.25 km landscape
Latvian name: Aramzemju malu garums 1,25 km ainavā
Procedure:
6.133 Edges_CropsFallow_r3000
filename: Edges_CropsFallow_r3000.tif
layername: egv_133
English name: Edge pixels of Cropland, Fallow land within the 3 km landscape
Latvian name: Aramzemju malu garums 3 km ainavā
Procedure:
6.134 Edges_CropsFallow_r10000
filename: Edges_CropsFallow_r10000.tif
layername: egv_134
English name: Edge pixels of Cropland, Fallow land within the 10 km landscape
Latvian name: Aramzemju malu garums 10 km ainavā
Procedure:
6.135 Edges_FarmlandShrubs-Trees_cell
filename: Edges_FarmlandShrubs-Trees_cell.tif
layername: egv_135
English name: Edge pixels of Farmland, Clear-Cuts, Shrubs bordering with Trees within the analysis cell (1 ha)
Latvian name: Lauksaimniecības zemju, izcirtumu, krūmu malu ar kokiem garums analīzes šūnā (1 ha)
Procedure:
6.136 Edges_FarmlandShrubs-Trees_r500
filename: Edges_FarmlandShrubs-Trees_r500.tif
layername: egv_136
English name: Edge pixels of Farmland, Clear-Cuts, Shrubs bordering with Trees within the 0.5 km landscape
Latvian name: Lauksaimniecības zemju, izcirtumu, krūmu malu ar kokiem garums 0,5 km ainavā
Procedure:
6.137 Edges_FarmlandShrubs-Trees_r1250
filename: Edges_FarmlandShrubs-Trees_r1250.tif
layername: egv_137
English name: Edge pixels of Farmland, Clear-Cuts, Shrubs bordering with Trees within the 1.25 km landscape
Latvian name: Lauksaimniecības zemju, izcirtumu, krūmu malu ar kokiem garums 1,25 km ainavā
Procedure:
6.138 Edges_FarmlandShrubs-Trees_r3000
filename: Edges_FarmlandShrubs-Trees_r3000.tif
layername: egv_138
English name: Edge pixels of Farmland, Clear-Cuts, Shrubs bordering with Trees within the 3 km landscape
Latvian name: Lauksaimniecības zemju, izcirtumu, krūmu malu ar kokiem garums 3 km ainavā
Procedure:
6.139 Edges_FarmlandShrubs-Trees_r10000
filename: Edges_FarmlandShrubs-Trees_r10000.tif
layername: egv_139
English name: Edge pixels of Farmland, Clear-Cuts, Shrubs bordering with Trees within the 10 km landscape
Latvian name: Lauksaimniecības zemju, izcirtumu, krūmu malu ar kokiem garums 10 km ainavā
Procedure:
6.140 Edges_Grasslands_cell
filename: Edges_Grasslands_cell.tif
layername: egv_140
English name: Edge pixels of Grassland within the analysis cell (1 ha)
Latvian name: Zālāju malu garums analīzes šūnā (1 ha)
Procedure:
6.141 Edges_Grasslands_r500
filename: Edges_Grasslands_r500.tif
layername: egv_141
English name: Edge pixels of Grassland within the 0.5 km landscape
Latvian name: Zālāju malu garums 0,5 km ainavā
Procedure:
6.142 Edges_Grasslands_r1250
filename: Edges_Grasslands_r1250.tif
layername: egv_142
English name: Edge pixels of Grassland within the 1.25 km landscape
Latvian name: Zālāju malu garums 1,25 km ainavā
Procedure:
6.143 Edges_Grasslands_r3000
filename: Edges_Grasslands_r3000.tif
layername: egv_143
English name: Edge pixels of Grassland within the 3 km landscape
Latvian name: Zālāju malu garums 3 km ainavā
Procedure:
6.144 Edges_Grasslands_r10000
filename: Edges_Grasslands_r10000.tif
layername: egv_144
English name: Edge pixels of Grassland within the 10 km landscape
Latvian name: Zālāju malu garums 10 km ainavā
Procedure:
6.145 Edges_OldForests_cell
filename: Edges_OldForests_cell.tif
layername: egv_145
English name: Edge pixels of Forests Over Rotation Age within the analysis cell (1 ha)
Latvian name: Pieaugušo un pāraugušo mežaudžu malu garums analīzes šūnā (1 ha)
Procedure:
6.146 Edges_OldForests_r500
filename: Edges_OldForests_r500.tif
layername: egv_146
English name: Edge pixels of Forests Over Rotation Age within the 0.5 km landscape
Latvian name: Pieaugušo un pāraugušo mežaudžu malu garums 0,5 km ainavā
Procedure:
6.147 Edges_OldForests_r1250
filename: Edges_OldForests_r1250.tif
layername: egv_147
English name: Edge pixels of Forests Over Rotation Age within the 1.25 km landscape
Latvian name: Pieaugušo un pāraugušo mežaudžu malu garums 1,25 km ainavā
Procedure:
6.148 Edges_OldForests_r3000
filename: Edges_OldForests_r3000.tif
layername: egv_148
English name: Edge pixels of Forests Over Rotation Age within the 3 km landscape
Latvian name: Pieaugušo un pāraugušo mežaudžu malu garums 3 km ainavā
Procedure:
6.149 Edges_OldForests_r10000
filename: Edges_OldForests_r10000.tif
layername: egv_149
English name: Edge pixels of Forests Over Rotation Age within the 10 km landscape
Latvian name: Pieaugušo un pāraugušo mežaudžu malu garums 10 km ainavā
Procedure:
6.150 Edges_Roads_cell
filename: Edges_Roads_cell.tif
layername: egv_150
English name: Edge pixels of Roads within the analysis cell (1 ha)
Latvian name: Ceļu malu garums analīzes šūnā (1 ha)
Procedure:
6.151 Edges_Roads_r500
filename: Edges_Roads_r500.tif
layername: egv_151
English name: Edge pixels of Roads within the 0.5 km landscape
Latvian name: Ceļu malu garums 0,5 km ainavā
Procedure:
6.152 Edges_Roads_r1250
filename: Edges_Roads_r1250.tif
layername: egv_152
English name: Edge pixels of Roads within the 1.25 km landscape
Latvian name: Ceļu malu garums 1,25 km ainavā
Procedure:
6.153 Edges_Roads_r3000
filename: Edges_Roads_r3000.tif
layername: egv_153
English name: Edge pixels of Roads within the 3 km landscape
Latvian name: Ceļu malu garums 3 km ainavā
Procedure:
6.154 Edges_Roads_r10000
filename: Edges_Roads_r10000.tif
layername: egv_154
English name: Edge pixels of Roads within the 10 km landscape
Latvian name: Ceļu malu garums 10 km ainavā
Procedure:
6.155 Edges_Trees_cell
filename: Edges_Trees_cell.tif
layername: egv_155
English name: Edge pixels of Trees within the analysis cell (1 ha)
Latvian name: Koku malu garums analīzes šūnā (1 ha)
Procedure:
6.156 Edges_Trees_r500
filename: Edges_Trees_r500.tif
layername: egv_156
English name: Edge pixels of Trees within the 0.5 km landscape
Latvian name: Koku malu garums 0,5 km ainavā
Procedure:
6.157 Edges_Trees_r1250
filename: Edges_Trees_r1250.tif
layername: egv_157
English name: Edge pixels of Trees within the 1.25 km landscape
Latvian name: Koku malu garums 1,25 km ainavā
Procedure:
6.158 Edges_Trees_r3000
filename: Edges_Trees_r3000.tif
layername: egv_158
English name: Edge pixels of Trees within the 3 km landscape
Latvian name: Koku malu garums 3 km ainavā
Procedure:
6.159 Edges_Trees_r10000
filename: Edges_Trees_r10000.tif
layername: egv_159
English name: Edge pixels of Trees within the 10 km landscape
Latvian name: Koku malu garums 10 km ainavā
Procedure:
6.160 Edges_Water_cell
filename: Edges_Water_cell.tif
layername: egv_160
English name: Edge pixels of Water within the analysis cell (1 ha)
Latvian name: Ūdenstilpju malu garums nalīzes šūnā (1 ha)
Procedure:
6.161 Edges_Water_r500
filename: Edges_Water_r500.tif
layername: egv_161
English name: Edge pixels of Water within the 0.5 km landscape
Latvian name: Ūdenstilpju malu garums 0,5 km ainavā
Procedure:
6.162 Edges_Water_r1250
filename: Edges_Water_r1250.tif
layername: egv_162
English name: Edge pixels of Water within the 1.25 km landscape
Latvian name: Ūdenstilpju malu garums 1,25 km ainavā
Procedure:
6.163 Edges_Water_r3000
filename: Edges_Water_r3000.tif
layername: egv_163
English name: Edge pixels of Water within the 3 km landscape
Latvian name: Ūdenstilpju malu garums 3 km ainavā
Procedure:
6.164 Edges_Water_r10000
filename: Edges_Water_r10000.tif
layername: egv_164
English name: Edge pixels of Water within the 10 km landscape
Latvian name: Ūdenstilpju malu garums 10 km ainavā
Procedure:
6.165 Edges_Water-Farmland_cell
filename: Edges_Water-Farmland_cell.tif
layername: egv_165
English name: Edge pixels of Water bordering with Farmland within the analysis cell (1 ha)
Latvian name: Ūdenstilpu malu ar lauksaimniecības zemēm garums analīzes šūnā (1 ha)
Procedure:
6.166 Edges_Water-Farmland_r500
filename: Edges_Water-Farmland_r500.tif
layername: egv_166
English name: Edge pixels of Water bordering with Farmland within the 0.5 km landscape
Latvian name: Ūdenstilpu malu ar lauksaimniecības zemēm garums 0,5 km ainavā
Procedure:
6.167 Edges_Water-Farmland_r1250
filename: Edges_Water-Farmland_r1250.tif
layername: egv_167
English name: Edge pixels of Water bordering with Farmland within the 1.25 km landscape
Latvian name: Ūdenstilpu malu ar lauksaimniecības zemēm garums 1,25 km ainavā
Procedure:
6.168 Edges_Water-Farmland_r3000
filename: Edges_Water-Farmland_r3000.tif
layername: egv_168
English name: Edge pixels of Water bordering with Farmland within the 3 km landscape
Latvian name: Ūdenstilpu malu ar lauksaimniecības zemēm garums 3 km ainavā
Procedure:
6.169 Edges_Water-Farmland_r10000
filename: Edges_Water-Farmland_r10000.tif
layername: egv_169
English name: Edge pixels of Water bordering with Farmland within the 10 km landscape
Latvian name: Ūdenstilpu malu ar lauksaimniecības zemēm garums 10 km ainavā
Procedure:
6.170 Edges_Water-Grassland_cell
filename: Edges_Water-Grassland_cell.tif
layername: egv_170
English name: Edge pixels of Water bordering with Grassland within the analysis cell (1 ha)
Latvian name: Ūdenstilpu malu ar zālājiem garums analīzes šūnā (1 ha)
Procedure:
6.171 Edges_Water-Grassland_r500
filename: Edges_Water-Grassland_r500.tif
layername: egv_171
English name: Edge pixels of Water bordering with Grassland within the 0.5 km landscape
Latvian name: Ūdenstilpu malu ar zālājiem garums 0,5 km ainavā
Procedure:
6.172 Edges_Water-Grassland_r1250
filename: Edges_Water-Grassland_r1250.tif
layername: egv_172
English name: Edge pixels of Water bordering with Grassland within the 1.25 km landscape
Latvian name: Ūdenstilpu malu ar zālājiem garums 1,25 km ainavā
Procedure:
6.173 Edges_Water-Grassland_r3000
filename: Edges_Water-Grassland_r3000.tif
layername: egv_173
English name: Edge pixels of Water bordering with Grassland within the 3 km landscape
Latvian name: Ūdenstilpu malu ar zālājiem garums 3 km ainavā
Procedure:
6.174 Edges_Water-Grassland_r10000
filename: Edges_Water-Grassland_r10000.tif
layername: egv_174
English name: Edge pixels of Water bordering with Grassland within the 10 km landscape
Latvian name: Ūdenstilpu malu ar zālājiem garums 10 km ainavā
Procedure:
6.175 Edges_ReedSedgeRushBeds-Water_cell
filename: Edges_ReedSedgeRushBeds-Water_cell.tif
layername: egv_175
English name: Edge pixels of Reed-, Sedge-, Rush- Beds bordering with Water within the analysis cell (1 ha)
Latvian name: Niedrāju, grīslāju, meldrāju malu ar ūdeni garums analīzes šūnā (1 ha)
Procedure:
6.176 Edges_ReedSedgeRushBeds-Water_r500
filename: Edges_ReedSedgeRushBeds-Water_r500.tif
layername: egv_176
English name: Edge pixels of Reed-, Sedge-, Rush- Beds bordering with Water within the 0.5 km landscape
Latvian name: Niedrāju, grīslāju, meldrāju malu ar ūdeni garums 0,5 km ainavā
Procedure:
6.177 Edges_ReedSedgeRushBeds-Water_r1250
filename: Edges_ReedSedgeRushBeds-Water_r1250.tif
layername: egv_177
English name: Edge pixels of Reed-, Sedge-, Rush- Beds bordering with Water within the 1.25 km landscape
Latvian name: Niedrāju, grīslāju, meldrāju malu ar ūdeni garums 1,25 km ainavā
Procedure:
6.178 Edges_ReedSedgeRushBeds-Water_r3000
filename: Edges_ReedSedgeRushBeds-Water_r3000.tif
layername: egv_178
English name: Edge pixels of Reed-, Sedge-, Rush- Beds bordering with Water within the 3 km landscape
Latvian name: Niedrāju, grīslāju, meldrāju malu ar ūdeni garums 3 km ainavā
Procedure:
6.179 Edges_ReedSedgeRushBeds-Water_r10000
filename: Edges_ReedSedgeRushBeds-Water_r10000.tif
layername: egv_179
English name: Edge pixels of Reed-, Sedge-, Rush- Beds bordering with Water within the 10 km landscape
Latvian name: Niedrāju, grīslāju, meldrāju malu ar ūdeni garums 10 km ainavā
Procedure:
6.180 FarmlandCrops_CropsAll_cell
filename: FarmlandCrops_CropsAll_cell.tif
layername: egv_180
English name: Fractional cover of Crops (all types) within the analysis cell (1 ha)
Latvian name: Aramzemju (dažādu lauksaimniecības kultūru) platības īpatsvars analīzes šūnā (1 ha)
Procedure:
6.181 FarmlandCrops_CropsAll_r500
filename: FarmlandCrops_CropsAll_r500.tif
layername: egv_181
English name: Fractional cover of Crops (all types) within the 0.5 km landscape
Latvian name: Aramzemju (dažādu lauksaimniecības kultūru) platības īpatsvars 0,5 km ainavā
Procedure:
6.182 FarmlandCrops_CropsAll_r1250
filename: FarmlandCrops_CropsAll_r1250.tif
layername: egv_182
English name: Fractional cover of Crops (all types) within the 1.25 km landscape
Latvian name: Aramzemju (dažādu lauksaimniecības kultūru) platības īpatsvars 1,25 km ainavā
Procedure:
6.183 FarmlandCrops_CropsAll_r3000
filename: FarmlandCrops_CropsAll_r3000.tif
layername: egv_183
English name: Fractional cover of Crops (all types) within the 3 km landscape
Latvian name: Aramzemju (dažādu lauksaimniecības kultūru) platības īpatsvars 3 km ainavā
Procedure:
6.184 FarmlandCrops_CropsAll_r10000
filename: FarmlandCrops_CropsAll_r10000.tif
layername: egv_184
English name: Fractional cover of Crops (all types) within the 10 km landscape
Latvian name: Aramzemju (dažādu lauksaimniecības kultūru) platības īpatsvars 10 km ainavā
Procedure:
6.185 FarmlandCrops_CropsHoed_cell
filename: FarmlandCrops_CropsHoed_cell.tif
layername: egv_185
English name: Fractional cover of Hoed Crops within the analysis cell (1 ha)
Latvian name: Vagu un rušināmkultūru platības īpatsvars analīzes šūnā (1 ha)
Procedure:
6.186 FarmlandCrops_CropsHoed_r500
filename: FarmlandCrops_CropsHoed_r500.tif
layername: egv_186
English name: Fractional cover of Hoed Crops within the 0.5 km landscape
Latvian name: Vagu un rušināmkultūru platības īpatsvars 0,5 km ainavā
Procedure:
6.187 FarmlandCrops_CropsHoed_r1250
filename: FarmlandCrops_CropsHoed_r1250.tif
layername: egv_187
English name: Fractional cover of Hoed Crops within the 1.25 km landscape
Latvian name: Vagu un rušināmkultūru platības īpatsvars 1,25 km ainavā
Procedure:
6.188 FarmlandCrops_CropsHoed_r3000
filename: FarmlandCrops_CropsHoed_r3000.tif
layername: egv_188
English name: Fractional cover of Hoed Crops within the 3 km landscape
Latvian name: Vagu un rušināmkultūru platības īpatsvars 3 km ainavā
Procedure:
6.189 FarmlandCrops_CropsHoed_r10000
filename: FarmlandCrops_CropsHoed_r10000.tif
layername: egv_189
English name: Fractional cover of Hoed Crops within the 10 km landscape
Latvian name: Vagu un rušināmkultūru platības īpatsvars 10 km ainavā
Procedure:
6.190 FarmlandCrops_CropsOther_cell
filename: FarmlandCrops_CropsOther_cell.tif
layername: egv_190
English name: Fractional cover of Other Crops within the analysis cell (1 ha)
Latvian name: Citu lauksaimniecības kultūraugu aramzemēs platības īpatsvars analīzes šūnā (1 ha)
Procedure:
6.191 FarmlandCrops_CropsOther_r500
filename: FarmlandCrops_CropsOther_r500.tif
layername: egv_191
English name: Fractional cover of Other Crops within the 0.5 km landscape
Latvian name: Citu lauksaimniecības kultūraugu aramzemēs platības īpatsvars 0,5 km ainavā
Procedure:
6.192 FarmlandCrops_CropsOther_r1250
filename: FarmlandCrops_CropsOther_r1250.tif
layername: egv_192
English name: Fractional cover of Other Crops within the 1.25 km landscape
Latvian name: Citu lauksaimniecības kultūraugu aramzemēs platības īpatsvars 1,25 km ainavā
Procedure:
6.193 FarmlandCrops_CropsOther_r3000
filename: FarmlandCrops_CropsOther_r3000.tif
layername: egv_193
English name: Fractional cover of Other Crops within the 3 km landscape
Latvian name: Citu lauksaimniecības kultūraugu aramzemēs platības īpatsvars 3 km ainavā
Procedure:
6.194 FarmlandCrops_CropsOther_r10000
filename: FarmlandCrops_CropsOther_r10000.tif
layername: egv_194
English name: Fractional cover of Other Crops within the 10 km landscape
Latvian name: Citu lauksaimniecības kultūraugu aramzemēs platības īpatsvars 10 km ainavā
Procedure:
6.195 FarmlandCrops_CropsSpring_cell
filename: FarmlandCrops_CropsSpring_cell.tif
layername: egv_195
English name: Fractional cover of Spring Sown Crops within the analysis cell (1 ha)
Latvian name: Vasarāju aramzemēs platības īpatsvars analīzes šūnā (1 ha)
Procedure:
6.196 FarmlandCrops_CropsSpring_r500
filename: FarmlandCrops_CropsSpring_r500.tif
layername: egv_196
English name: Fractional cover of Spring Sown Crops within the 0.5 km landscape
Latvian name: Vasarāju aramzemēs platības īpatsvars 0,5 km ainavā
Procedure:
6.197 FarmlandCrops_CropsSpring_r1250
filename: FarmlandCrops_CropsSpring_r1250.tif
layername: egv_197
English name: Fractional cover of Spring Sown Crops within the 1.25 km landscape
Latvian name: Vasarāju aramzemēs platības īpatsvars 1,25 km ainavā
Procedure:
6.198 FarmlandCrops_CropsSpring_r3000
filename: FarmlandCrops_CropsSpring_r3000.tif
layername: egv_198
English name: Fractional cover of Spring Sown Crops within the 3 km landscape
Latvian name: Vasarāju aramzemēs platības īpatsvars 3 km ainavā
Procedure:
6.199 FarmlandCrops_CropsSpring_r10000
filename: FarmlandCrops_CropsSpring_r10000.tif
layername: egv_199
English name: Fractional cover of Spring Sown Crops within the 10 km landscape
Latvian name: Vasarāju aramzemēs platības īpatsvars 10 km ainavā
Procedure:
6.200 FarmlandCrops_CropsWinter_cell
filename: FarmlandCrops_CropsWinter_cell.tif
layername: egv_200
English name: Fractional cover of Winter Crops within the analysis cell (1 ha)
Latvian name: Ziemāju aramzemēs platības īpatsvars analīzes šūnā (1 ha)
Procedure:
6.201 FarmlandCrops_CropsWinter_r500
filename: FarmlandCrops_CropsWinter_r500.tif
layername: egv_201
English name: Fractional cover of Winter Crops within the 0.5 km landscape
Latvian name: Ziemāju aramzemēs platības īpatsvars 0,5 km ainavā
Procedure:
6.202 FarmlandCrops_CropsWinter_r1250
filename: FarmlandCrops_CropsWinter_r1250.tif
layername: egv_202
English name: Fractional cover of Winter Crops within the 1.25 km landscape
Latvian name: Ziemāju aramzemēs platības īpatsvars 1,25 km ainavā
Procedure:
6.203 FarmlandCrops_CropsWinter_r3000
filename: FarmlandCrops_CropsWinter_r3000.tif
layername: egv_203
English name: Fractional cover of Winter Crops within the 3 km landscape
Latvian name: Ziemāju aramzemēs platības īpatsvars 3 km ainavā
Procedure:
6.204 FarmlandCrops_CropsWinter_r10000
filename: FarmlandCrops_CropsWinter_r10000.tif
layername: egv_204
English name: Fractional cover of Winter Crops within the 10 km landscape
Latvian name: Ziemāju aramzemēs platības īpatsvars 10 km ainavā
Procedure:
6.205 FarmlandCrops_RapeseedsSpring_cell
filename: FarmlandCrops_RapeseedsSpring_cell.tif
layername: egv_205
English name: Fractional cover of Spring Sown Rapeseed, Turnip, Corn within the analysis cell (1 ha)
Latvian name: Vasaras rapša, ripša, kukurūzas platība analīzes šūnā (1 ha)
Procedure:
6.206 FarmlandCrops_RapeseedsSpring_r500
filename: FarmlandCrops_RapeseedsSpring_r500.tif
layername: egv_206
English name: Fractional cover of Spring Sown Rapeseed, Turnip, Corn within the 0.5 km landscape
Latvian name: Vasaras rapša, ripša, kukurūzas platība 0,5 km ainavā
Procedure:
6.207 FarmlandCrops_RapeseedsSpring_r1250
filename: FarmlandCrops_RapeseedsSpring_r1250.tif
layername: egv_207
English name: Fractional cover of Spring Sown Rapeseed, Turnip, Corn within the 1.25 km landscape
Latvian name: Vasaras rapša, ripša, kukurūzas platība 1,25 km ainavā
Procedure:
6.208 FarmlandCrops_RapeseedsSpring_r3000
filename: FarmlandCrops_RapeseedsSpring_r3000.tif
layername: egv_208
English name: Fractional cover of Spring Sown Rapeseed, Turnip, Corn within the 3 km landscape
Latvian name: Vasaras rapša, ripša, kukurūzas platība 3 km ainavā
Procedure:
6.209 FarmlandCrops_RapeseedsSpring_r10000
filename: FarmlandCrops_RapeseedsSpring_r10000.tif
layername: egv_209
English name: Fractional cover of Spring Sown Rapeseed, Turnip, Corn within the 10 km landscape
Latvian name: Vasaras rapša, ripša, kukurūzas platība 10 km ainavā
Procedure:
6.210 FarmlandCrops_RapeseedsWinter_cell
filename: FarmlandCrops_RapeseedsWinter_cell.tif
layername: egv_210
English name: Fractional cover of Winter Rapeseed, Turnip within the analysis cell (1 ha)
Latvian name: Ziemas rapša, ripša platības īpatsvars analīzes šūnā (1 ha)
Procedure:
6.211 FarmlandCrops_RapeseedsWinter_r500
filename: FarmlandCrops_RapeseedsWinter_r500.tif
layername: egv_211
English name: Fractional cover of Winter Rapeseed, Turnip within the 0.5 km landscape
Latvian name: Ziemas rapša, ripša platības īpatsvars 0,5 km ainavā
Procedure:
6.212 FarmlandCrops_RapeseedsWinter_r1250
filename: FarmlandCrops_RapeseedsWinter_r1250.tif
layername: egv_212
English name: Fractional cover of Winter Rapeseed, Turnip within the 1.25 km landscape
Latvian name: Ziemas rapša, ripša platības īpatsvars 1,25 km ainavā
Procedure:
6.213 FarmlandCrops_RapeseedsWinter_r3000
filename: FarmlandCrops_RapeseedsWinter_r3000.tif
layername: egv_213
English name: Fractional cover of Winter Rapeseed, Turnip within the 3 km landscape
Latvian name: Ziemas rapša, ripša platības īpatsvars 3 km ainavā
Procedure:
6.214 FarmlandCrops_RapeseedsWinter_r10000
filename: FarmlandCrops_RapeseedsWinter_r10000.tif
layername: egv_214
English name: Fractional cover of Winter Rapeseed, Turnip within the 10 km landscape
Latvian name: Ziemas rapša, ripša platības īpatsvars 10 km ainavā
Procedure:
6.215 FarmlandGrassland_GrasslandsAbandoned_cell
filename: FarmlandGrassland_GrasslandsAbandoned_cell.tif
layername: egv_215
English name: Fractional cover of Abandoned Grassland within the analysis cell (1 ha)
Latvian name: Neapsaimniekotu zālāju platības īpatsvars analīzes šūnā (1 ha)
Procedure:
6.216 FarmlandGrassland_GrasslandsAbandoned_r500
filename: FarmlandGrassland_GrasslandsAbandoned_r500.tif
layername: egv_216
English name: Fractional cover of Abandoned Grassland within the 0.5 km landscape
Latvian name: Neapsaimniekotu zālāju platības īpatsvars 0,5 km ainavā
Procedure:
6.217 FarmlandGrassland_GrasslandsAbandoned_r1250
filename: FarmlandGrassland_GrasslandsAbandoned_r1250.tif
layername: egv_217
English name: Fractional cover of Abandoned Grassland within the 1.25 km landscape
Latvian name: Neapsaimniekotu zālāju platības īpatsvars 1,25 km ainavā
Procedure:
6.218 FarmlandGrassland_GrasslandsAbandoned_r3000
filename: FarmlandGrassland_GrasslandsAbandoned_r3000.tif
layername: egv_218
English name: Fractional cover of Abandoned Grassland within the 3 km landscape
Latvian name: Neapsaimniekotu zālāju platības īpatsvars 3 km ainavā
Procedure:
6.219 FarmlandGrassland_GrasslandsAbandoned_r10000
filename: FarmlandGrassland_GrasslandsAbandoned_r10000.tif
layername: egv_219
English name: Fractional cover of Abandoned Grassland within the 10 km landscape
Latvian name: Neapsaimniekotu zālāju platības īpatsvars 10 km ainavā
Procedure:
6.220 FarmlandGrassland_GrasslandsAll_cell
filename: FarmlandGrassland_GrasslandsAll_cell.tif
layername: egv_220
English name: Fractional cover of any Grassland within the analysis cell (1 ha)
Latvian name: Zālāju (visu veidu) platības īpatsvars analīzes šūnā (1 ha)
Procedure:
6.221 FarmlandGrassland_GrasslandsAll_r500
filename: FarmlandGrassland_GrasslandsAll_r500.tif
layername: egv_221
English name: Fractional cover of any Grassland within the 0.5 km landscape
Latvian name: Zālāju (visu veidu) platības īpatsvars 0,5 km ainavā
Procedure:
6.222 FarmlandGrassland_GrasslandsAll_r1250
filename: FarmlandGrassland_GrasslandsAll_r1250.tif
layername: egv_222
English name: Fractional cover of any Grassland within the 1.25 km landscape
Latvian name: Zālāju (visu veidu) platības īpatsvars 1,25 km ainavā
Procedure:
6.223 FarmlandGrassland_GrasslandsAll_r3000
filename: FarmlandGrassland_GrasslandsAll_r3000.tif
layername: egv_223
English name: Fractional cover of any Grassland within the 3 km landscape
Latvian name: Zālāju (visu veidu) platības īpatsvars 3 km ainavā
Procedure:
6.224 FarmlandGrassland_GrasslandsAll_r10000
filename: FarmlandGrassland_GrasslandsAll_r10000.tif
layername: egv_224
English name: Fractional cover of any Grassland within the 10 km landscape
Latvian name: Zālāju (visu veidu) platības īpatsvars 10 km ainavā
Procedure:
6.225 FarmlandGrassland_GrasslandsPermanent_cell
filename: FarmlandGrassland_GrasslandsPermanent_cell.tif
layername: egv_225
English name: Fractional cover of Permanent Grassland within the analysis cell (1 ha)
Latvian name: Ilggadīgu zālāju platības īpatsvars analīzes šūnā (1 ha)
Procedure:
6.226 FarmlandGrassland_GrasslandsPermanent_r500
filename: FarmlandGrassland_GrasslandsPermanent_r500.tif
layername: egv_226
English name: Fractional cover of Permanent Grassland within the 0.5 km landscape
Latvian name: Ilggadīgu zālāju platības īpatsvars 0,5 km ainavā
Procedure:
6.227 FarmlandGrassland_GrasslandsPermanent_r1250
filename: FarmlandGrassland_GrasslandsPermanent_r1250.tif
layername: egv_227
English name: Fractional cover of Permanent Grassland within the 1.25 km landscape
Latvian name: Ilggadīgu zālāju platības īpatsvars 1,25 km ainavā
Procedure:
6.228 FarmlandGrassland_GrasslandsPermanent_r3000
filename: FarmlandGrassland_GrasslandsPermanent_r3000.tif
layername: egv_228
English name: Fractional cover of Permanent Grassland within the 3 km landscape
Latvian name: Ilggadīgu zālāju platības īpatsvars 3 km ainavā
Procedure:
6.229 FarmlandGrassland_GrasslandsPermanent_r10000
filename: FarmlandGrassland_GrasslandsPermanent_r10000.tif
layername: egv_229
English name: Fractional cover of Permanent Grassland within the 10 km landscape
Latvian name: Ilggadīgu zālāju platības īpatsvars 10 km ainavā
Procedure:
6.230 FarmlandGrassland_GrasslandsTemporary_cell
filename: FarmlandGrassland_GrasslandsTemporary_cell.tif
layername: egv_230
English name: Fractional cover of Temporary Grassland within the analysis cell (1 ha)
Latvian name: Zālāju-aramzemē platības īpatsvars analīzes šūnā (1 ha)
Procedure:
6.231 FarmlandGrassland_GrasslandsTemporary_r500
filename: FarmlandGrassland_GrasslandsTemporary_r500.tif
layername: egv_231
English name: Fractional cover of Temporary Grassland within the 0.5 km landscape
Latvian name: Zālāju-aramzemē platības īpatsvars 0,5 km ainavā
Procedure:
6.232 FarmlandGrassland_GrasslandsTemporary_r1250
filename: FarmlandGrassland_GrasslandsTemporary_r1250.tif
layername: egv_232
English name: Fractional cover of Temporary Grassland within the 1.25 km landscape
Latvian name: Zālāju-aramzemē platības īpatsvars 1,25 km ainavā
Procedure:
6.233 FarmlandGrassland_GrasslandsTemporary_r3000
filename: FarmlandGrassland_GrasslandsTemporary_r3000.tif
layername: egv_233
English name: Fractional cover of Temporary Grassland within the 3 km landscape
Latvian name: Zālāju-aramzemē platības īpatsvars 3 km ainavā
Procedure:
6.234 FarmlandGrassland_GrasslandsTemporary_r10000
filename: FarmlandGrassland_GrasslandsTemporary_r10000.tif
layername: egv_234
English name: Fractional cover of Temporary Grassland within the 10 km landscape
Latvian name: Zālāju-aramzemē platības īpatsvars 10 km ainavā
Procedure:
6.235 FarmlandParcels_FieldsActive_cell
filename: FarmlandParcels_FieldsActive_cell.tif
layername: egv_235
English name: Fractional cover of Agricultural Land Parcels within the analysis cell (1 ha)
Latvian name: Lauku bloku platības īpatsvars analīzes šūnā (1 ha)
Procedure:
6.236 FarmlandParcels_FieldsActive_r500
filename: FarmlandParcels_FieldsActive_r500.tif
layername: egv_236
English name: Fractional cover of Agricultural Land Parcels within the 0.5 km landscape
Latvian name: Lauku bloku platības īpatsvars 0,5 km ainavā
Procedure:
6.237 FarmlandParcels_FieldsActive_r1250
filename: FarmlandParcels_FieldsActive_r1250.tif
layername: egv_237
English name: Fractional cover of Agricultural Land Parcels within the 1.25 km landscape
Latvian name: Lauku bloku platības īpatsvars 1,25 km ainavā
Procedure:
6.238 FarmlandParcels_FieldsActive_r3000
filename: FarmlandParcels_FieldsActive_r3000.tif
layername: egv_238
English name: Fractional cover of Agricultural Land Parcels within the 3 km landscape
Latvian name: Lauku bloku platības īpatsvars 3 km ainavā
Procedure:
6.239 FarmlandParcels_FieldsActive_r10000
filename: FarmlandParcels_FieldsActive_r10000.tif
layername: egv_239
English name: Fractional cover of Agricultural Land Parcels within the 10 km landscape
Latvian name: Lauku bloku platības īpatsvars 10 km ainavā
Procedure:
6.240 FarmlandPloughed_CropsFallow_cell
filename: FarmlandPloughed_CropsFallow_cell.tif
layername: egv_240
English name: Fractional cover of Crop-, Fallow- Land within the analysis cell (1 ha)
Latvian name: Aramzemju, papuvju platības īpatsvars analīzes šūnā (1 ha)
Procedure:
6.241 FarmlandPloughed_CropsFallow_r500
filename: FarmlandPloughed_CropsFallow_r500.tif
layername: egv_241
English name: Fractional cover of Crop-, Fallow- Land within the 0.5 km landscape
Latvian name: Aramzemju, papuvju platības īpatsvars 0,5 km ainavā
Procedure:
6.242 FarmlandPloughed_CropsFallow_r1250
filename: FarmlandPloughed_CropsFallow_r1250.tif
layername: egv_242
English name: Fractional cover of Crop-, Fallow- Land within the 1.25 km landscape
Latvian name: Aramzemju, papuvju platības īpatsvars 1,25 km ainavā
Procedure:
6.243 FarmlandPloughed_CropsFallow_r3000
filename: FarmlandPloughed_CropsFallow_r3000.tif
layername: egv_243
English name: Fractional cover of Crop-, Fallow- Land within the 3 km landscape
Latvian name: Aramzemju, papuvju platības īpatsvars 3 km ainavā
Procedure:
6.244 FarmlandPloughed_CropsFallow_r10000
filename: FarmlandPloughed_CropsFallow_r10000.tif
layername: egv_244
English name: Fractional cover of Crop-, Fallow- Land within the 10 km landscape
Latvian name: Aramzemju, papuvju platības īpatsvars 10 km ainavā
Procedure:
6.245 FarmlandPloughed_CropsFallowTempGrass_cell
filename: FarmlandPloughed_CropsFallowTempGrass_cell.tif
layername: egv_245
English name: Fractional cover of Crop-, Fallow-, Temporary Grass- Lands within the analysis cell (1 ha)
Latvian name: Aramzemju, papuvju, zālāju-aramzemē platības īpatsvars analīzes šūnā (1 ha)
Procedure:
6.246 FarmlandPloughed_CropsFallowTempGrass_r500
filename: FarmlandPloughed_CropsFallowTempGrass_r500.tif
layername: egv_246
English name: Fractional cover of Crop-, Fallow-, Temporary Grass- Lands within the 0.5 km landscape
Latvian name: Aramzemju, papuvju, zālāju-aramzemē platības īpatsvars 0,5 km ainavā
Procedure:
6.247 FarmlandPloughed_CropsFallowTempGrass_r1250
filename: FarmlandPloughed_CropsFallowTempGrass_r1250.tif
layername: egv_247
English name: Fractional cover of Crop-, Fallow-, Temporary Grass- Lands within the 1.25 km landscape
Latvian name: Aramzemju, papuvju, zālāju-aramzemē platības īpatsvars 1,25 km ainavā
Procedure:
6.248 FarmlandPloughed_CropsFallowTempGrass_r3000
filename: FarmlandPloughed_CropsFallowTempGrass_r3000.tif
layername: egv_248
English name: Fractional cover of Crop-, Fallow-, Temporary Grass- Lands within the 3 km landscape
Latvian name: Aramzemju, papuvju, zālāju-aramzemē platības īpatsvars 3 km ainavā
Procedure:
6.249 FarmlandPloughed_CropsFallowTempGrass_r10000
filename: FarmlandPloughed_CropsFallowTempGrass_r10000.tif
layername: egv_249
English name: Fractional cover of Crop-, Fallow-, Temporary Grass- Lands within the 10 km landscape
Latvian name: Aramzemju, papuvju, zālāju-aramzemē platības īpatsvars 10 km ainavā
Procedure:
6.250 FarmlandPloughed_Fallow_cell
filename: FarmlandPloughed_Fallow_cell.tif
layername: egv_250
English name: Fractional cover of Fallow Land within the analysis cell (1 ha)
Latvian name: Papuvju platības īpatsvars analīzes šūnā (1 ha)
Procedure:
6.251 FarmlandPloughed_Fallow_r500
filename: FarmlandPloughed_Fallow_r500.tif
layername: egv_251
English name: Fractional cover of Fallow Land within the 0.5 km landscape
Latvian name: Papuvju platības īpatsvars 0,5 km ainavā
Procedure:
6.252 FarmlandPloughed_Fallow_r1250
filename: FarmlandPloughed_Fallow_r1250.tif
layername: egv_252
English name: Fractional cover of Fallow Land within the 1.25 km landscape
Latvian name: Papuvju platības īpatsvars 1,25 km ainavā
Procedure:
6.253 FarmlandPloughed_Fallow_r3000
filename: FarmlandPloughed_Fallow_r3000.tif
layername: egv_253
English name: Fractional cover of Fallow Land within the 3 km landscape
Latvian name: Papuvju platības īpatsvars 3 km ainavā
Procedure:
6.254 FarmlandPloughed_Fallow_r10000
filename: FarmlandPloughed_Fallow_r10000.tif
layername: egv_254
English name: Fractional cover of Fallow Land within the 10 km landscape
Latvian name: Papuvju platības īpatsvars 10 km ainavā
Procedure:
6.255 FarmlandSubsidies_BiologicalSubsidies_cell
filename: FarmlandSubsidies_BiologicalSubsidies_cell.tif
layername: egv_255
English name: Fractional cover of Farmland receiving Subsidies for Biological Agriculture within the analysis cell (1 ha)
Latvian name: Bioloģiskās lauksaimniecības atbalstam pieteikto lauksaimniecības platību īpatsvars analīzes šūnā (1 ha)
Procedure:
6.256 FarmlandSubsidies_BiologicalSubsidies_r500
filename: FarmlandSubsidies_BiologicalSubsidies_r500.tif
layername: egv_256
English name: Fractional cover of Farmland receiving Subsidies for Biological Agriculture within the 0.5 km landscape
Latvian name: Bioloģiskās lauksaimniecības atbalstam pieteikto lauksaimniecības platību īpatsvars 0,5 km ainavā
Procedure:
6.257 FarmlandSubsidies_BiologicalSubsidies_r1250
filename: FarmlandSubsidies_BiologicalSubsidies_r1250.tif
layername: egv_257
English name: Fractional cover of Farmland receiving Subsidies for Biological Agriculture within the 1.25 km landscape
Latvian name: Bioloģiskās lauksaimniecības atbalstam pieteikto lauksaimniecības platību īpatsvars 1,25 km ainavā
Procedure:
6.258 FarmlandSubsidies_BiologicalSubsidies_r3000
filename: FarmlandSubsidies_BiologicalSubsidies_r3000.tif
layername: egv_258
English name: Fractional cover of Farmland receiving Subsidies for Biological Agriculture within the 3 km landscape
Latvian name: Bioloģiskās lauksaimniecības atbalstam pieteikto lauksaimniecības platību īpatsvars 3 km ainavā
Procedure:
6.259 FarmlandSubsidies_BiologicalSubsidies_r10000
filename: FarmlandSubsidies_BiologicalSubsidies_r10000.tif
layername: egv_259
English name: Fractional cover of Farmland receiving Subsidies for Biological Agriculture within the 10 km landscape
Latvian name: Bioloģiskās lauksaimniecības atbalstam pieteikto lauksaimniecības platību īpatsvars 10 km ainavā
Procedure:
6.260 FarmlandTrees_PermanentCrops_cell
filename: FarmlandTrees_PermanentCrops_cell.tif
layername: egv_260
English name: Fractional cover of Permanent Crops within the analysis cell (1 ha)
Latvian name: Augļudārzu platības īpatsvars analīzes šūnā (1 ha)
Procedure:
6.261 FarmlandTrees_PermanentCrops_r500
filename: FarmlandTrees_PermanentCrops_r500.tif
layername: egv_261
English name: Fractional cover of Permanent Crops within the 0.5 km landscape
Latvian name: Augļudārzu platības īpatsvars 0,5 km ainavā
Procedure:
6.262 FarmlandTrees_PermanentCrops_r1250
filename: FarmlandTrees_PermanentCrops_r1250.tif
layername: egv_262
English name: Fractional cover of Permanent Crops within the 1.25 km landscape
Latvian name: Augļudārzu platības īpatsvars 1,25 km ainavā
Procedure:
6.263 FarmlandTrees_PermanentCrops_r3000
filename: FarmlandTrees_PermanentCrops_r3000.tif
layername: egv_263
English name: Fractional cover of Permanent Crops within the 3 km landscape
Latvian name: Augļudārzu platības īpatsvars 3 km ainavā
Procedure:
6.264 FarmlandTrees_PermanentCrops_r10000
filename: FarmlandTrees_PermanentCrops_r10000.tif
layername: egv_264
English name: Fractional cover of Permanent Crops within the 10 km landscape
Latvian name: Augļudārzu platības īpatsvars 10 km ainavā
Procedure:
6.265 FarmlandTrees_ShortRotationCoppice_cell
filename: FarmlandTrees_ShortRotationCoppice_cell.tif
layername: egv_265
English name: Fractional cover of Short-rotation Coppice and Other Woody Energy Crops within the analysis cell (1 ha)
Latvian name: Īscirtmeta atvasāju un enerģijai audzētu kokaugu platības īpatsvars analīzes šūnā (1 ha)
Procedure:
6.266 FarmlandTrees_ShortRotationCoppice_r500
filename: FarmlandTrees_ShortRotationCoppice_r500.tif
layername: egv_266
English name: Fractional cover of Short-rotation Coppice and Other Woody Energy Crops within the 0.5 km landscape
Latvian name: Īscirtmeta atvasāju un enerģijai audzētu kokaugu platības īpatsvars 0,5 km ainavā
Procedure:
6.267 FarmlandTrees_ShortRotationCoppice_r1250
filename: FarmlandTrees_ShortRotationCoppice_r1250.tif
layername: egv_267
English name: Fractional cover of Short-rotation Coppice and Other Woody Energy Crops within the 1.25 km landscape
Latvian name: Īscirtmeta atvasāju un enerģijai audzētu kokaugu platības īpatsvars 1,25 km ainavā
Procedure:
6.268 FarmlandTrees_ShortRotationCoppice_r3000
filename: FarmlandTrees_ShortRotationCoppice_r3000.tif
layername: egv_268
English name: Fractional cover of Short-rotation Coppice and Other Woody Energy Crops within the 3 km landscape
Latvian name: Īscirtmeta atvasāju un enerģijai audzētu kokaugu platības īpatsvars 3 km ainavā
Procedure:
6.269 FarmlandTrees_ShortRotationCoppice_r10000
filename: FarmlandTrees_ShortRotationCoppice_r10000.tif
layername: egv_269
English name: Fractional cover of Short-rotation Coppice and Other Woody Energy Crops within the 10 km landscape
Latvian name: Īscirtmeta atvasāju un enerģijai audzētu kokaugu platības īpatsvars 10 km ainavā
Procedure:
6.270 ForestsAge_ClearcutsLowStands_cell
filename: ForestsAge_ClearcutsLowStands_cell.tif
layername: egv_270
English name: Fractional cover of Clearcuts and Stands lower than 5 m within the analysis cell (1 ha)
Latvian name: Izcirtumu un mežaudžu līdz 5 m augstumam platības īpatsvars analīzes šūnā (1 ha)
Procedure:
6.271 ForestsAge_ClearcutsLowStands_r500
filename: ForestsAge_ClearcutsLowStands_r500.tif
layername: egv_271
English name: Fractional cover of Clearcuts and Stands lower than 5 m within the 0.5 km landscape
Latvian name: Izcirtumu un mežaudžu līdz 5 m augstumam platības īpatsvars 0,5 km ainavā
Procedure:
6.272 ForestsAge_ClearcutsLowStands_r1250
filename: ForestsAge_ClearcutsLowStands_r1250.tif
layername: egv_272
English name: Fractional cover of Clearcuts and Stands lower than 5 m within the 1.25 km landscape
Latvian name: Izcirtumu un mežaudžu līdz 5 m augstumam platības īpatsvars 1,25 km ainavā
Procedure:
6.273 ForestsAge_ClearcutsLowStands_r3000
filename: ForestsAge_ClearcutsLowStands_r3000.tif
layername: egv_273
English name: Fractional cover of Clearcuts and Stands lower than 5 m within the 3 km landscape
Latvian name: Izcirtumu un mežaudžu līdz 5 m augstumam platības īpatsvars 3 km ainavā
Procedure:
6.274 ForestsAge_ClearcutsLowStands_r10000
filename: ForestsAge_ClearcutsLowStands_r10000.tif
layername: egv_274
English name: Fractional cover of Clearcuts and Stands lower than 5 m within the 10 km landscape
Latvian name: Izcirtumu un mežaudžu līdz 5 m augstumam platības īpatsvars 10 km ainavā
Procedure:
6.275 ForestsAge_Middle_cell
filename: ForestsAge_Middle_cell.tif
layername: egv_275
English name: Fractional cover of Middle-Aged Forests within the analysis cell (1 ha)
Latvian name: Vidēja vecuma un briestaudžu platības īpatsvars analīzes šūnā (1 ha)
Procedure:
6.276 ForestsAge_Middle_r500
filename: ForestsAge_Middle_r500.tif
layername: egv_276
English name: Fractional cover of Middle-Aged Forests within the 0.5 km landscape
Latvian name: Vidēja vecuma un briestaudžu platības īpatsvars 0,5 km ainavā
Procedure:
6.277 ForestsAge_Middle_r1250
filename: ForestsAge_Middle_r1250.tif
layername: egv_277
English name: Fractional cover of Middle-Aged Forests within the 1.25 km landscape
Latvian name: Vidēja vecuma un briestaudžu platības īpatsvars 1,25 km ainavā
Procedure:
6.278 ForestsAge_Middle_r3000
filename: ForestsAge_Middle_r3000.tif
layername: egv_278
English name: Fractional cover of Middle-Aged Forests within the 3 km landscape
Latvian name: Vidēja vecuma un briestaudžu platības īpatsvars 3 km ainavā
Procedure:
6.279 ForestsAge_Middle_r10000
filename: ForestsAge_Middle_r10000.tif
layername: egv_279
English name: Fractional cover of Middle-Aged Forests within the 10 km landscape
Latvian name: Vidēja vecuma un briestaudžu platības īpatsvars 10 km ainavā
Procedure:
6.280 ForestsAge_Old_cell
filename: ForestsAge_Old_cell.tif
layername: egv_280
English name: Fractional cover of Old (over rotation age) Forests within the analysis cell (1 ha)
Latvian name: Vecu (kopš cirtmeta) mežu platības īpatsvars analīzes šūnā (1 ha)
Procedure:
6.281 ForestsAge_Old_r500
filename: ForestsAge_Old_r500.tif
layername: egv_281
English name: Fractional cover of Old (over rotation age) Forests within the 0.5 km landscape
Latvian name: Vecu (kopš cirtmeta)mežu platības īpatsvars 0,5 km ainavā
Procedure:
6.282 ForestsAge_Old_r1250
filename: ForestsAge_Old_r1250.tif
layername: egv_282
English name: Fractional cover of Old (over rotation age) Forests within the 1.25 km landscape
Latvian name: Vecu (kopš cirtmeta) mežu platības īpatsvars 1,25 km ainavā
Procedure:
6.283 ForestsAge_Old_r3000
filename: ForestsAge_Old_r3000.tif
layername: egv_283
English name: Fractional cover of Old (over rotation age) Forests within the 3 km landscape
Latvian name: Vecu (kopš cirtmeta) mežu platības īpatsvars 3 km ainavā
Procedure:
6.284 ForestsAge_Old_r10000
filename: ForestsAge_Old_r10000.tif
layername: egv_284
English name: Fractional cover of Old (over rotation age) Forests within the 10 km landscape
Latvian name: Vecu (kopš cirtmeta) mežu platības īpatsvars 10 km ainavā
Procedure:
6.285 ForestsAge_YoungTallStandsShrubs_cell
filename: ForestsAge_YoungTallStandsShrubs_cell.tif
layername: egv_285
English name: Fractional cover of Shrubs, Young Stands (at least 5 m tall) within the analysis cell (1 ha)
Latvian name: Krūmāju un jaunaudžu (no 5 m augstuma) platības īpatsvars analīzes šūnā (1 ha)
Procedure:
6.286 ForestsAge_YoungTallStandsShrubs_r500
filename: ForestsAge_YoungTallStandsShrubs_r500.tif
layername: egv_286
English name: Fractional cover of Shrubs, Young Stands (at least 5 m tall) within the 0.5 km landscape
Latvian name: Krūmāju un jaunaudžu (no 5 m augstuma) platības īpatsvars 0,5 km ainavā
Procedure:
6.287 ForestsAge_YoungTallStandsShrubs_r1250
filename: ForestsAge_YoungTallStandsShrubs_r1250.tif
layername: egv_287
English name: Fractional cover of Shrubs, Young Stands (at least 5 m tall) within the 1.25 km landscape
Latvian name: Krūmāju un jaunaudžu (no 5 m augstuma) platības īpatsvars 1,25 km ainavā
Procedure:
6.288 ForestsAge_YoungTallStandsShrubs_r3000
filename: ForestsAge_YoungTallStandsShrubs_r3000.tif
layername: egv_288
English name: Fractional cover of Shrubs, Young Stands (at least 5 m tall) within the 3 km landscape
Latvian name: Krūmāju un jaunaudžu (no 5 m augstuma) platības īpatsvars 3 km ainavā
Procedure:
6.289 ForestsAge_YoungTallStandsShrubs_r10000
filename: ForestsAge_YoungTallStandsShrubs_r10000.tif
layername: egv_289
English name: Fractional cover of Shrubs, Young Stands (at least 5 m tall) within the 10 km landscape
Latvian name: Krūmāju un jaunaudžu (no 5 m augstuma) platības īpatsvars 10 km ainavā
Procedure:
6.290 ForestsQuant_AgeProp-average_cell
filename: ForestsQuant_AgeProp-average_cell.tif
layername: egv_290
English name: Average stand age relative to rotation age within the analysis cell (1 ha)
Latvian name: Mežaudzes vecuma attiecība pret cirtmetu, vidējais analīzes šūnā (1 ha)
Procedure:
6.291 ForestsQuant_DominantDiameter-max_cell
filename: ForestsQuant_DominantDiameter-max_cell.tif
layername: egv_291
English name: Dominant tree trunk diameter, maximum within the analysis cell (1 ha)
Latvian name: Koku stumbra diametrs, valdaudzes maksimālais analīzes šūnā (1 ha)
Procedure:
6.292 ForestsQuant_LargestDiameter-max_cell
filename: ForestsQuant_LargestDiameter-max_cell.tif
layername: egv_292
English name: Largest tree trunk diameter within the analysis cell (1 ha)
Latvian name: Lielākais koka stumbra diametrs analīzes šūnā (1 ha)
Procedure:
6.293 ForestsQuant_TimeSinceDisturbance-average_cell
filename: ForestsQuant_TimeSinceDisturbance-average_cell.tif
layername: egv_293
English name: Time since last disturbance affecting tree growing within the analysis cell (1 ha)
Latvian name: Laiks kopš pēdējā ar koku augšanu saistītā traucējuma analīzes šūnā (1 ha)
Procedure:
6.294 ForestsQuant_VolumeAspen-sum_cell
filename: ForestsQuant_VolumeAspen-sum_cell.tif
layername: egv_294
English name: Timber volume of Aspens, Poplars within the analysis cell (1 ha)
Latvian name: Apšu, papeļu krāja analīzes šūnā (1 ha)
Procedure:
6.295 ForestsQuant_VolumeBirch-sum_cell
filename: ForestsQuant_VolumeBirch-sum_cell.tif
layername: egv_295
English name: Timber volume of Birches within the analysis cell (1 ha)
Latvian name: Bērzu krāja analīzes šūnā (1 ha)
Procedure:
6.296 ForestsQuant_VolumeBlackAlder-sum_cell
filename: ForestsQuant_VolumeBlackAlder-sum_cell.tif
layername: egv_296
English name: Timber volume of Black Alder within the analysis cell (1 ha)
Latvian name: Melnalkšņu krāja analīzes šūnā (1 ha)
Procedure:
6.297 ForestsQuant_VolumeBorealDeciduousOther-sum_cell
filename: ForestsQuant_VolumeBorealDeciduousOther-sum_cell.tif
layername: egv_297
English name: Timber volume of Other Boreal Deciduous trees within the analysis cell (1 ha)
Latvian name: Citu šaurlapju krāja analīzes šūnā (1 ha)
Procedure:
6.298 ForestsQuant_VolumeBorealDeciduousTotal-sum_cell
filename: ForestsQuant_VolumeBorealDeciduousTotal-sum_cell.tif
layername: egv_298
English name: Timber volume of Boreal Deciduous trees within the analysis cell (1 ha)
Latvian name: Šaurlapju krāja analīzes šūnā (1 ha)
Procedure:
6.299 ForestsQuant_VolumeConiferous-sum_cell
filename: ForestsQuant_VolumeConiferous-sum_cell.tif
layername: egv_299
English name: Timber volume of Coniferous trees within the analysis cell (1 ha)
Latvian name: Skujkoku krāja analīzes šūnā (1 ha)
Procedure:
6.300 ForestsQuant_VolumeOak-sum_cell
filename: ForestsQuant_VolumeOak-sum_cell.tif
layername: egv_300
English name: Timber volume of Oaks within the analysis cell (1 ha)
Latvian name: Ozolu krāja analīzes šūnā (1 ha)
Procedure:
6.301 ForestsQuant_VolumeOakMaple-sum_cell
filename: ForestsQuant_VolumeOakMaple-sum_cell.tif
layername: egv_301
English name: Timber volume of Oaks, Maples within the analysis cell (1 ha)
Latvian name: Ozolu, kļavu krāja analīzes šūnā (1 ha)
Procedure:
6.302 ForestsQuant_VolumePine-sum_cell
filename: ForestsQuant_VolumePine-sum_cell.tif
layername: egv_302
English name: Timber volume of Pines within the analysis cell (1 ha)
Latvian name: Priežu krāja analīzes šūnā (1 ha)
Procedure:
6.303 ForestsQuant_VolumeSpruce-sum_cell
filename: ForestsQuant_VolumeSpruce-sum_cell.tif
layername: egv_303
English name: Timber volume of Spruces within the analysis cell (1 ha)
Latvian name: Egļu krāja analīzes šūnā (1 ha)
Procedure:
6.304 ForestsQuant_VolumeTemperateDeciduousTotal-sum_cell
filename: ForestsQuant_VolumeTemperateDeciduousTotal-sum_cell.tif
layername: egv_304
English name: Timber volume of Temperate Deciduous trees within the analysis cell (1 ha)
Latvian name: Platlapju krāja analīzes šūnā (1 ha)
Procedure:
6.305 ForestsQuant_VolumeTemperateWithoutOak-sum_cell
filename: ForestsQuant_VolumeTemperateWithoutOak-sum_cell.tif
layername: egv_305
English name: Timber volume of Temperate Deciduous trees (without oaks) within the analysis cell (1 ha)
Latvian name: Paltlapju (bez ozoliem) krāja analīzes šūnā (1 ha)
Procedure:
6.306 ForestsQuant_VolumeTemperateWithoutOakMaple-sum_cell
filename: ForestsQuant_VolumeTemperateWithoutOakMaple-sum_cell.tif
layername: egv_306
English name: Timber volume of Temperate Deciduous trees (without oaks, maples) within the analysis cell (1 ha)
Latvian name: Platlapju (bez ozoliem, kļavām) krāja analīzes šūnā (1 ha)
Procedure:
6.307 ForestsQuant_VolumeTotal-sum_cell
filename: ForestsQuant_VolumeTotal-sum_cell.tif
layername: egv_307
English name: Timber volume within the analysis cell (1 ha)
Latvian name: Kopējā krāja analīzes šūnā (1 ha)
Procedure:
6.308 ForestsSoil_EutrophicDrained_cell
filename: ForestsSoil_EutrophicDrained_cell.tif
layername: egv_308
English name: Fractional cover of Drained Eutrophic Forests within the analysis cell (1 ha)
Latvian name: Susinātu eitrofu mežu platības īpatsvars analīzes šūnā (1 ha)
Procedure:
6.309 ForestsSoil_EutrophicDrained_r500
filename: ForestsSoil_EutrophicDrained_r500.tif
layername: egv_309
English name: Fractional cover of Drained Eutrophic Forests within the 0.5 km landscape
Latvian name: Susinātu eitrofu mežu platības īpatsvars 0,5 km ainavā
Procedure:
6.310 ForestsSoil_EutrophicDrained_r1250
filename: ForestsSoil_EutrophicDrained_r1250.tif
layername: egv_310
English name: Fractional cover of Drained Eutrophic Forests within the 1.25 km landscape
Latvian name: Susinātu eitrofu mežu platības īpatsvars 1,25 km ainavā
Procedure:
6.311 ForestsSoil_EutrophicDrained_r3000
filename: ForestsSoil_EutrophicDrained_r3000.tif
layername: egv_311
English name: Fractional cover of Drained Eutrophic Forests within the 3 km landscape
Latvian name: Susinātu eitrofu mežu platības īpatsvars 3 km ainavā
Procedure:
6.312 ForestsSoil_EutrophicDrained_r10000
filename: ForestsSoil_EutrophicDrained_r10000.tif
layername: egv_312
English name: Fractional cover of Drained Eutrophic Forests within the 10 km landscape
Latvian name: Susinātu eitrofu mežu platības īpatsvars 10 km ainavā
Procedure:
6.313 ForestsSoil_EutrophicMineral_cell
filename: ForestsSoil_EutrophicMineral_cell.tif
layername: egv_313
English name: Fractional cover of Eutrophic Forests on undrained Mineral Soils within the analysis cell (1 ha)
Latvian name: Eitrofu mežu nesusinātās minerālaugsnēs platības īpatsvars analīzes šūnā (1 ha)
Procedure:
6.314 ForestsSoil_EutrophicMineral_r500
filename: ForestsSoil_EutrophicMineral_r500.tif
layername: egv_314
English name: Fractional cover of Eutrophic Forests on undrained Mineral Soils within the 0.5 km landscape
Latvian name: Eitrofu mežu nesusinātās minerālaugsnēs platības īpatsvars 0,5 km ainavā
Procedure:
6.315 ForestsSoil_EutrophicMineral_r1250
filename: ForestsSoil_EutrophicMineral_r1250.tif
layername: egv_315
English name: Fractional cover of Eutrophic Forests on undrained Mineral Soils within the 1.25 km landscape
Latvian name: Eitrofu mežu nesusinātās minerālaugsnēs platības īpatsvars 1,25 km ainavā
Procedure:
6.316 ForestsSoil_EutrophicMineral_r3000
filename: ForestsSoil_EutrophicMineral_r3000.tif
layername: egv_316
English name: Fractional cover of Eutrophic Forests on undrained Mineral Soils within the 3 km landscape
Latvian name: Eitrofu mežu nesusinātās minerālaugsnēs platības īpatsvars 3 km ainavā
Procedure:
6.317 ForestsSoil_EutrophicMineral_r10000
filename: ForestsSoil_EutrophicMineral_r10000.tif
layername: egv_317
English name: Fractional cover of Eutrophic Forests on undrained Mineral Soils within the 10 km landscape
Latvian name: Eitrofu mežu nesusinātās minerālaugsnēs platības īpatsvars 10 km ainavā
Procedure:
6.318 ForestsSoil_EutrophicOrganic_cell
filename: ForestsSoil_EutrophicOrganic_cell.tif
layername: egv_318
English name: Fractional cover of Eutrophic Forests on undrained Organic Soils within the analysis cell (1 ha)
Latvian name: Eitrofu mežu nesusinātās organiskajās augsnēs platības īpatsvars analīzes šūnā (1 ha)
Procedure:
6.319 ForestsSoil_EutrophicOrganic_r500
filename: ForestsSoil_EutrophicOrganic_r500.tif
layername: egv_319
English name: Fractional cover of Eutrophic Forests on undrained Organic Soils within the 0.5 km landscape
Latvian name: Eitrofu mežu nesusinātās organiskajās augsnēs platības īpatsvars 0,5 km ainavā
Procedure:
6.320 ForestsSoil_EutrophicOrganic_r1250
filename: ForestsSoil_EutrophicOrganic_r1250.tif
layername: egv_320
English name: Fractional cover of Eutrophic Forests on undrained Organic Soils within the 1.25 km landscape
Latvian name: Eitrofu mežu nesusinātās organiskajās augsnēs platības īpatsvars 1,25 km ainavā
Procedure:
6.321 ForestsSoil_EutrophicOrganic_r3000
filename: ForestsSoil_EutrophicOrganic_r3000.tif
layername: egv_321
English name: Fractional cover of Eutrophic Forests on undrained Organic Soils within the 3 km landscape
Latvian name: Eitrofu mežu nesusinātās organiskajās augsnēs platības īpatsvars 3 km ainavā
Procedure:
6.322 ForestsSoil_EutrophicOrganic_r10000
filename: ForestsSoil_EutrophicOrganic_r10000.tif
layername: egv_322
English name: Fractional cover of Eutrophic Forests on undrained Organic Soils within the 10 km landscape
Latvian name: Eitrofu mežu nesusinātās organiskajās augsnēs platības īpatsvars 10 km ainavā
Procedure:
6.323 ForestsSoil_MesotrophicMineral_cell
filename: ForestsSoil_MesotrophicMineral_cell.tif
layername: egv_323
English name: Fractional cover of Mesotrophic Forests on undrained Mineral Soils within the analysis cell (1 ha)
Latvian name: Mezotrofu mežu minerālaugsnēs platības īpatsvars analīzes šūnā (1 ha)
Procedure:
6.324 ForestsSoil_MesotrophicMineral_r500
filename: ForestsSoil_MesotrophicMineral_r500.tif
layername: egv_324
English name: Fractional cover of Mesotrophic Forests on undrained Mineral Soils within the 0.5 km landscape
Latvian name: Mezotrofu mežu nesusinātās minerālaugsnēs platības īpatsvars 0,5 km ainavā
Procedure:
6.325 ForestsSoil_MesotrophicMineral_r1250
filename: ForestsSoil_MesotrophicMineral_r1250.tif
layername: egv_325
English name: Fractional cover of Mesotrophic Forests on undrained Mineral Soils within the 1.25 km landscape
Latvian name: Mezotrofu mežu nesusinātās minerālaugsnēs platības īpatsvars 1,25 km ainavā
Procedure:
6.326 ForestsSoil_MesotrophicMineral_r3000
filename: ForestsSoil_MesotrophicMineral_r3000.tif
layername: egv_326
English name: Fractional cover of Mesotrophic Forests on undrained Mineral Soils within the 3 km landscape
Latvian name: Mezotrofu mežu nesusinātās minerālaugsnēs platības īpatsvars 3 km ainavā
Procedure:
6.327 ForestsSoil_MesotrophicMineral_r10000
filename: ForestsSoil_MesotrophicMineral_r10000.tif
layername: egv_327
English name: Fractional cover of Mesotrophic Forests on undrained Mineral Soils within the 10 km landscape
Latvian name: Mezotrofu mežu nesusinātās minerālaugsnēs platības īpatsvars 10 km ainavā
Procedure:
6.328 ForestsSoil_OligotrophicDrained_cell
filename: ForestsSoil_OligotrophicDrained_cell.tif
layername: egv_328
English name: Fractional cover of Drained Oligotrophic Forests within the analysis cell (1 ha)
Latvian name: Susinātu oligotrofu mežu platības īpatsvars analīzes šūnā (1 ha)
Procedure:
6.329 ForestsSoil_OligotrophicDrained_r500
filename: ForestsSoil_OligotrophicDrained_r500.tif
layername: egv_329
English name: Fractional cover of Drained Oligotrophic Forests within the 0.5 km landscape
Latvian name: Susinātu oligotrofu mežu platības īpatsvars 0,5 km ainavā
Procedure:
6.330 ForestsSoil_OligotrophicDrained_r1250
filename: ForestsSoil_OligotrophicDrained_r1250.tif
layername: egv_330
English name: Fractional cover of Drained Oligotrophic Forests within the 1.25 km landscape
Latvian name: Susinātu oligotrofu mežu platības īpatsvars 1,25 km ainavā
Procedure:
6.331 ForestsSoil_OligotrophicDrained_r3000
filename: ForestsSoil_OligotrophicDrained_r3000.tif
layername: egv_331
English name: Fractional cover of Drained Oligotrophic Forests within the 3 km landscape
Latvian name: Susinātu oligotrofu mežu platības īpatsvars 3 km ainavā
Procedure:
6.332 ForestsSoil_OligotrophicDrained_r10000
filename: ForestsSoil_OligotrophicDrained_r10000.tif
layername: egv_332
English name: Fractional cover of Drained Oligotrophic Forests within the 10 km landscape
Latvian name: Susinātu oligotrofu mežu platības īpatsvars 10 km ainavā
Procedure:
6.333 ForestsSoil_OligotrophicMineral_cell
filename: ForestsSoil_OligotrophicMineral_cell.tif
layername: egv_333
English name: Fractional cover of Oligotrophic Forests on undrained Mineral Soils within the analysis cell (1 ha)
Latvian name: Oligotrofu mežu nesusinātās minerālaugsnēs platības īpatsvars analīzes šūnā (1 ha)
Procedure:
6.334 ForestsSoil_OligotrophicMineral_r500
filename: ForestsSoil_OligotrophicMineral_r500.tif
layername: egv_334
English name: Fractional cover of Oligotrophic Forests on undrained Mineral Soils within the 0.5 km landscape
Latvian name: Oligotrofu mežu nesusinātās minerālaugsnēs platības īpatsvars 0,5 km ainavā
Procedure:
6.335 ForestsSoil_OligotrophicMineral_r1250
filename: ForestsSoil_OligotrophicMineral_r1250.tif
layername: egv_335
English name: Fractional cover of Oligotrophic Forests on undrained Mineral Soils within the 1.25 km landscape
Latvian name: Oligotrofu mežu nesusinātās minerālaugsnēs platības īpatsvars 1,25 km ainavā
Procedure:
6.336 ForestsSoil_OligotrophicMineral_r3000
filename: ForestsSoil_OligotrophicMineral_r3000.tif
layername: egv_336
English name: Fractional cover of Oligotrophic Forests on undrained Mineral Soils within the 3 km landscape
Latvian name: Oligotrofu mežu nesusinātās minerālaugsnēs platības īpatsvars 3 km ainavā
Procedure:
6.337 ForestsSoil_OligotrophicMineral_r10000
filename: ForestsSoil_OligotrophicMineral_r10000.tif
layername: egv_337
English name: Fractional cover of Oligotrophic Forests on undrained Mineral Soils within the 10 km landscape
Latvian name: Oligotrofu mežu nesusinātās minerālaugsnēs platības īpatsvars 10 km ainavā
Procedure:
6.338 ForestsSoil_OligotrophicOrganic_cell
filename: ForestsSoil_OligotrophicOrganic_cell.tif
layername: egv_338
English name: Fractional cover of Oligotrophic Forests on undrained Organic Soils within the analysis cell (1 ha)
Latvian name: Oligotrofu mežu nesusinātās organiskajās augsnēs platības īpatsvars analīzes šūnā (1 ha)
Procedure:
6.339 ForestsSoil_OligotrophicOrganic_r500
filename: ForestsSoil_OligotrophicOrganic_r500.tif
layername: egv_339
English name: Fractional cover of Oligotrophic Forests on undrained Organic Soils within the 0.5 km landscape
Latvian name: Oligotrofu mežu nesusinātās organiskajās augsnēs platības īpatsvars 0,5 km ainavā
Procedure:
6.340 ForestsSoil_OligotrophicOrganic_r1250
filename: ForestsSoil_OligotrophicOrganic_r1250.tif
layername: egv_340
English name: Fractional cover of Oligotrophic Forests on undrained Organic Soils within the 1.25 km landscape
Latvian name: Oligotrofu mežu nesusinātās organiskajās augsnēs platības īpatsvars 1,25 km ainavā
Procedure:
6.341 ForestsSoil_OligotrophicOrganic_r3000
filename: ForestsSoil_OligotrophicOrganic_r3000.tif
layername: egv_341
English name: Fractional cover of Oligotrophic Forests on undrained Organic Soils within the 3 km landscape
Latvian name: Oligotrofu mežu nesusinātās organiskajās augsnēs platības īpatsvars 3 km ainavā
Procedure:
6.342 ForestsSoil_OligotrophicOrganic_r10000
filename: ForestsSoil_OligotrophicOrganic_r10000.tif
layername: egv_342
English name: Fractional cover of Oligotrophic Forests on undrained Organic Soils within the 10 km landscape
Latvian name: Oligotrofu mežu nesusinātās organiskajās augsnēs platības īpatsvars 10 km ainavā
Procedure:
6.343 ForestsTreesAge_BorealDeciduousOld_cell
filename: ForestsTreesAge_BorealDeciduousOld_cell.tif
layername: egv_343
English name: Fractional cover of Old (over rotation age) Boreal Deciduous Forests within the analysis cell (1 ha)
Latvian name: Vecu (kopš cirtmeta) šaurlapju mežu platības īpatsvars analīzes šūnā (1 ha)
Procedure:
6.344 ForestsTreesAge_BorealDeciduousOld_r500
filename: ForestsTreesAge_BorealDeciduousOld_r500.tif
layername: egv_344
English name: Fractional cover of Old (over rotation age) Boreal Deciduous Forests within the 0.5 km landscape
Latvian name: Vecu (kopš cirtmeta) šaurlapju mežu platības īpatsvars 0,5 km ainavā
Procedure:
6.345 ForestsTreesAge_BorealDeciduousOld_r1250
filename: ForestsTreesAge_BorealDeciduousOld_r1250.tif
layername: egv_345
English name: Fractional cover of Old (over rotation age) Boreal Deciduous Forests within the 1.25 km landscape
Latvian name: Vecu (kopš cirtmeta) šaurlapju mežu platības īpatsvars 1,25 km ainavā
Procedure:
6.346 ForestsTreesAge_BorealDeciduousOld_r3000
filename: ForestsTreesAge_BorealDeciduousOld_r3000.tif
layername: egv_346
English name: Fractional cover of Old (over rotation age) Boreal Deciduous Forests within the 3 km landscape
Latvian name: Vecu (kopš cirtmeta) šaurlapju mežu platības īpatsvars 3 km ainavā
Procedure:
6.347 ForestsTreesAge_BorealDeciduousOld_r10000
filename: ForestsTreesAge_BorealDeciduousOld_r10000.tif
layername: egv_347
English name: Fractional cover of Old (over rotation age) Boreal Deciduous Forests within the 10 km landscape
Latvian name: Vecu (kopš cirtmeta) šaurlapju mežu platības īpatsvars 10 km ainavā
Procedure:
6.348 ForestsTreesAge_BorealDeciduousYoung_cell
filename: ForestsTreesAge_BorealDeciduousYoung_cell.tif
layername: egv_348
English name: Fractional cover of Young (pre-rotation age) Boreal Deciduous Forests within the analysis cell (1 ha)
Latvian name: Jaunu (pirms cirtmeta) šaurlapju mežu platības īpatsvars analīzes šūnā (1 ha)
Procedure:
6.349 ForestsTreesAge_BorealDeciduousYoung_r500
filename: ForestsTreesAge_BorealDeciduousYoung_r500.tif
layername: egv_349
English name: Fractional cover of Young (pre-rotation age) Boreal Deciduous Forests within the 0.5 km landscape
Latvian name: Jaunu (pirms cirtmeta) šaurlapju mežu platības īpatsvars 0,5 km ainavā
Procedure:
6.350 ForestsTreesAge_BorealDeciduousYoung_r1250
filename: ForestsTreesAge_BorealDeciduousYoung_r1250.tif
layername: egv_350
English name: Fractional cover of Young (pre-rotation age) Boreal Deciduous Forests within the 1.25 km landscape
Latvian name: Jaunu (pirms cirtmeta) šaurlapju mežu platības īpatsvars 1,25 km ainavā
Procedure:
6.351 ForestsTreesAge_BorealDeciduousYoung_r3000
filename: ForestsTreesAge_BorealDeciduousYoung_r3000.tif
layername: egv_351
English name: Fractional cover of Young (pre-rotation age) Boreal Deciduous Forests within the 3 km landscape
Latvian name: Jaunu (pirms cirtmeta) šaurlapju mežu platības īpatsvars 3 km ainavā
Procedure:
6.352 ForestsTreesAge_BorealDeciduousYoung_r10000
filename: ForestsTreesAge_BorealDeciduousYoung_r10000.tif
layername: egv_352
English name: Fractional cover of Young (pre-rotation age) Boreal Deciduous Forests within the 10 km landscape
Latvian name: Jaunu (pirms cirtmeta) šaurlapju mežu platības īpatsvars 10 km ainavā
Procedure:
6.353 ForestsTreesAge_ConiferousOld_cell
filename: ForestsTreesAge_ConiferousOld_cell.tif
layername: egv_353
English name: Fractional cover of Old (over rotation age) Coniferous Forests within the analysis cell (1 ha)
Latvian name: Vecu (kopš cirtmeta) skujkoku mežu platības īpatsvars analīzes šūnā (1 ha)
Procedure:
6.354 ForestsTreesAge_ConiferousOld_r500
filename: ForestsTreesAge_ConiferousOld_r500.tif
layername: egv_354
English name: Fractional cover of Old (over rotation age) Coniferous Forests within the 0.5 km landscape
Latvian name: Vecu (kopš cirtmeta) skujkoku mežu platības īpatsvars 0,5 km ainavā
Procedure:
6.355 ForestsTreesAge_ConiferousOld_r1250
filename: ForestsTreesAge_ConiferousOld_r1250.tif
layername: egv_355
English name: Fractional cover of Old (over rotation age) Coniferous Forests within the 1.25 km landscape
Latvian name: Vecu (kopš cirtmeta) skujkoku mežu platības īpatsvars 1,25 km ainavā
Procedure:
6.356 ForestsTreesAge_ConiferousOld_r3000
filename: ForestsTreesAge_ConiferousOld_r3000.tif
layername: egv_356
English name: Fractional cover of Old (over rotation age) Coniferous Forests within the 3 km landscape
Latvian name: Vecu (kopš cirtmeta) skujkoku mežu platības īpatsvars 3 km ainavā
Procedure:
6.357 ForestsTreesAge_ConiferousOld_r10000
filename: ForestsTreesAge_ConiferousOld_r10000.tif
layername: egv_357
English name: Fractional cover of Old (over rotation age) Coniferous Forests within the 10 km landscape
Latvian name: Vecu (kopš cirtmeta) skujkoku mežu platības īpatsvars 10 km ainavā
Procedure:
6.358 ForestsTreesAge_ConiferousYoung_cell
filename: ForestsTreesAge_ConiferousYoung_cell.tif
layername: egv_358
English name: Fractional cover of Young (pre-rotation age) Coniferous Forests within the analysis cell (1 ha)
Latvian name: Jaunu (pirms cirtmeta) skujkoku mežu platības īpatsvars analīzes šūnā (1 ha)
Procedure:
6.359 ForestsTreesAge_ConiferousYoung_r500
filename: ForestsTreesAge_ConiferousYoung_r500.tif
layername: egv_359
English name: Fractional cover of Young (pre-rotation age) Coniferous Forests within the 0.5 km landscape
Latvian name: Jaunu (pirms cirtmeta) skujkoku mežu platības īpatsvars 0,5 km ainavā
Procedure:
6.360 ForestsTreesAge_ConiferousYoung_r1250
filename: ForestsTreesAge_ConiferousYoung_r1250.tif
layername: egv_360
English name: Fractional cover of Young (pre-rotation age) Coniferous Forests within the 1.25 km landscape
Latvian name: Jaunu (pirms cirtmeta) skujkoku mežu platības īpatsvars 1,25 km ainavā
Procedure:
6.361 ForestsTreesAge_ConiferousYoung_r3000
filename: ForestsTreesAge_ConiferousYoung_r3000.tif
layername: egv_361
English name: Fractional cover of Young (pre-rotation age) Coniferous Forests within the 3 km landscape
Latvian name: Jaunu (pirms cirtmeta) skujkoku mežu platības īpatsvars 3 km ainavā
Procedure:
6.362 ForestsTreesAge_ConiferousYoung_r10000
filename: ForestsTreesAge_ConiferousYoung_r10000.tif
layername: egv_362
English name: Fractional cover of Young (pre-rotation age) Coniferous Forests within the 10 km landscape
Latvian name: Jaunu (pirms cirtmeta) skujkoku mežu platības īpatsvars 10 km ainavā
Procedure:
6.363 ForestsTreesAge_MixedOld_cell
filename: ForestsTreesAge_MixedOld_cell.tif
layername: egv_363
English name: Fractional cover of Old (over rotation age) Mixed Forests within the analysis cell (1 ha)
Latvian name: Vecu (kopš cirtmeta) jauktu koku mežu platības īpatsvars analīzes šūnā (1 ha)
Procedure:
6.364 ForestsTreesAge_MixedOld_r500
filename: ForestsTreesAge_MixedOld_r500.tif
layername: egv_364
English name: Fractional cover of Old (over rotation age) Mixed Forests within the 0.5 km landscape
Latvian name: Vecu (kopš cirtmeta) jauktu koku mežu platības īpatsvars 0,5 km ainavā
Procedure:
6.365 ForestsTreesAge_MixedOld_r1250
filename: ForestsTreesAge_MixedOld_r1250.tif
layername: egv_365
English name: Fractional cover of Old (over rotation age) Mixed Forests within the 1.25 km landscape
Latvian name: Vecu (kopš cirtmeta) jauktu koku mežu platības īpatsvars 1,25 km ainavā
Procedure:
6.366 ForestsTreesAge_MixedOld_r3000
filename: ForestsTreesAge_MixedOld_r3000.tif
layername: egv_366
English name: Fractional cover of Old (over rotation age) Mixed Forests within the 3 km landscape
Latvian name: Vecu (kopš cirtmeta) jauktu koku mežu platības īpatsvars 3 km ainavā
Procedure:
6.367 ForestsTreesAge_MixedOld_r10000
filename: ForestsTreesAge_MixedOld_r10000.tif
layername: egv_367
English name: Fractional cover of Old (over rotation age) Mixed Forests within the 10 km landscape
Latvian name: Vecu (kopš cirtmeta) jauktu koku mežu platības īpatsvars 10 km ainavā
Procedure:
6.368 ForestsTreesAge_MixedYoung_cell
filename: ForestsTreesAge_MixedYoung_cell.tif
layername: egv_368
English name: Fractional cover of Young (pre-rotation age) Mixed Forests within the analysis cell (1 ha)
Latvian name: Jaunu (pirms cirtmeta) jauktu koku mežu platības īpatsvars analīzes šūnā (1 ha)
Procedure:
6.369 ForestsTreesAge_MixedYoung_r500
filename: ForestsTreesAge_MixedYoung_r500.tif
layername: egv_369
English name: Fractional cover of Young (pre-rotation age) Mixed Forests within the 0.5 km landscape
Latvian name: Jaunu (pirms cirtmeta) jauktu koku mežu platības īpatsvars 0,5 km ainavā
Procedure:
6.370 ForestsTreesAge_MixedYoung_r1250
filename: ForestsTreesAge_MixedYoung_r1250.tif
layername: egv_370
English name: Fractional cover of Young (pre-rotation age) Mixed Forests within the 1.25 km landscape
Latvian name: Jaunu (pirms cirtmeta) jauktu koku mežu platības īpatsvars 1,25 km ainavā
Procedure:
6.371 ForestsTreesAge_MixedYoung_r3000
filename: ForestsTreesAge_MixedYoung_r3000.tif
layername: egv_371
English name: Fractional cover of Young (pre-rotation age) Mixed Forests within the 3 km landscape
Latvian name: Jaunu (pirms cirtmeta) jauktu koku mežu platības īpatsvars 3 km ainavā
Procedure:
6.372 ForestsTreesAge_MixedYoung_r10000
filename: ForestsTreesAge_MixedYoung_r10000.tif
layername: egv_372
English name: Fractional cover of Young (pre-rotation age) Mixed Forests within the 10 km landscape
Latvian name: Jaunu (pirms cirtmeta) jauktu koku mežu platības īpatsvars 10 km ainavā
Procedure:
6.373 ForestsTreesAge_TemperateDeciduousOld_cell
filename: ForestsTreesAge_TemperateDeciduousOld_cell.tif
layername: egv_373
English name: Fractional cover of Old (over rotation age) Temperate Deciduous Forests within the analysis cell (1 ha)
Latvian name: Vecu (kopš cirtmeta) platlapju mežu platības īpatsvars analīzes šūnā (1 ha)
Procedure:
6.374 ForestsTreesAge_TemperateDeciduousOld_r500
filename: ForestsTreesAge_TemperateDeciduousOld_r500.tif
layername: egv_374
English name: Fractional cover of Old (over rotation age) Temperate Deciduous Forests within the 0.5 km landscape
Latvian name: Vecu (kopš cirtmeta) platlapju mežu platības īpatsvars 0,5 km ainavā
Procedure:
6.375 ForestsTreesAge_TemperateDeciduousOld_r1250
filename: ForestsTreesAge_TemperateDeciduousOld_r1250.tif
layername: egv_375
English name: Fractional cover of Old (over rotation age) Temperate Deciduous Forests within the 1.25 km landscape
Latvian name: Vecu (kopš cirtmeta) platlapju mežu platības īpatsvars 1,25 km ainavā
Procedure:
6.376 ForestsTreesAge_TemperateDeciduousOld_r3000
filename: ForestsTreesAge_TemperateDeciduousOld_r3000.tif
layername: egv_376
English name: Fractional cover of Old (over rotation age) Temperate Deciduous Forests within the 3 km landscape
Latvian name: Vecu (kopš cirtmeta) platlapju mežu platības īpatsvars 3 km ainavā
Procedure:
6.377 ForestsTreesAge_TemperateDeciduousOld_r10000
filename: ForestsTreesAge_TemperateDeciduousOld_r10000.tif
layername: egv_377
English name: Fractional cover of Old (over rotation age) Temperate Deciduous Forests within the 10 km landscape
Latvian name: Vecu (kopš cirtmeta) platlapju mežu platības īpatsvars 10 km ainavā
Procedure:
6.378 ForestsTreesAge_TemperateDeciduousYoung_cell
filename: ForestsTreesAge_TemperateDeciduousYoung_cell.tif
layername: egv_378
English name: Fractional cover of Young (pre-rotation age) Temperate Deciduous Forests within the analysis cell (1 ha)
Latvian name: Jaunu (pirms cirtmeta) platlapju mežu platības īpatsvars analīzes šūnā (1 ha)
Procedure:
6.379 ForestsTreesAge_TemperateDeciduousYoung_r500
filename: ForestsTreesAge_TemperateDeciduousYoung_r500.tif
layername: egv_379
English name: Fractional cover of Young (pre-rotation age) Temperate Deciduous Forests within the 0.5 km landscape
Latvian name: Jaunu (pirms cirtmeta) platlapju mežu platības īpatsvars 0,5 km ainavā
Procedure:
6.380 ForestsTreesAge_TemperateDeciduousYoung_r1250
filename: ForestsTreesAge_TemperateDeciduousYoung_r1250.tif
layername: egv_380
English name: Fractional cover of Young (pre-rotation age) Temperate Deciduous Forests within the 1.25 km landscape
Latvian name: Jaunu (pirms cirtmeta) platlapju mežu platības īpatsvars 1,25 km ainavā
Procedure:
6.381 ForestsTreesAge_TemperateDeciduousYoung_r3000
filename: ForestsTreesAge_TemperateDeciduousYoung_r3000.tif
layername: egv_381
English name: Fractional cover of Young (pre-rotation age) Temperate Deciduous Forests within the 3 km landscape
Latvian name: Jaunu (pirms cirtmeta) platlapju mežu platības īpatsvars 3 km ainavā
Procedure:
6.382 ForestsTreesAge_TemperateDeciduousYoung_r10000
filename: ForestsTreesAge_TemperateDeciduousYoung_r10000.tif
layername: egv_382
English name: Fractional cover of Young (pre-rotation age) Temperate Deciduous Forests within the 10 km landscape
Latvian name: Jaunu (pirms cirtmeta) platlapju mežu platības īpatsvars 10 km ainavā
Procedure:
6.383 ForestsTrees_BorealDeciduous_cell
filename: ForestsTrees_BorealDeciduous_cell.tif
layername: egv_383
English name: Fractional cover of Boeral Deciduous Forests within the analysis cell (1 ha)
Latvian name: Šaurlapju mežu platības īpatsvars analīzes šūnā (1 ha)
Procedure:
6.384 ForestsTrees_BorealDeciduous_r500
filename: ForestsTrees_BorealDeciduous_r500.tif
layername: egv_384
English name: Fractional cover of Boreal Deciduous Forests within the 0.5 km landscape
Latvian name: Šaurlapju mežu platības īpatsvars 0,5 km ainavā
Procedure:
6.385 ForestsTrees_BorealDeciduous_r1250
filename: ForestsTrees_BorealDeciduous_r1250.tif
layername: egv_385
English name: Fractional cover of Boreal Deciduous Forests within the 1.25 km landscape
Latvian name: Šaurlapju mežu platības īpatsvars 1,25 km ainavā
Procedure:
6.386 ForestsTrees_BorealDeciduous_r3000
filename: ForestsTrees_BorealDeciduous_r3000.tif
layername: egv_386
English name: Fractional cover of Boreal Deciduous Forests within the 3 km landscape
Latvian name: Šaurlapju mežu platības īpatsvars 3 km ainavā
Procedure:
6.387 ForestsTrees_BorealDeciduous_r10000
filename: ForestsTrees_BorealDeciduous_r10000.tif
layername: egv_387
English name: Fractional cover of Boreal Deciduous Forests within the 10 km landscape
Latvian name: Šaurlapju mežu platības īpatsvars 10 km ainavā
Procedure:
6.388 ForestsTrees_Coniferous_cell
filename: ForestsTrees_Coniferous_cell.tif
layername: egv_388
English name: Fractional cover of Coniferous Forests within the analysis cell (1 ha)
Latvian name: Skujkoku mežu platības īpatsvars analīzes šūnā (1 ha)
Procedure:
6.389 ForestsTrees_Coniferous_r500
filename: ForestsTrees_Coniferous_r500.tif
layername: egv_389
English name: Fractional cover of Coniferous Forests within the 0.5 km landscape
Latvian name: Skujkoku mežu platības īpatsvars 0,5 km ainavā
Procedure:
6.390 ForestsTrees_Coniferous_r1250
filename: ForestsTrees_Coniferous_r1250.tif
layername: egv_390
English name: Fractional cover of Coniferous Forests within the 1.25 km landscape
Latvian name: Skujkoku mežu platības īpatsvars 1,25 km ainavā
Procedure:
6.391 ForestsTrees_Coniferous_r3000
filename: ForestsTrees_Coniferous_r3000.tif
layername: egv_391
English name: Fractional cover of Coniferous Forests within the 3 km landscape
Latvian name: Skujkoku mežu platības īpatsvars 3 km ainavā
Procedure:
6.392 ForestsTrees_Coniferous_r10000
filename: ForestsTrees_Coniferous_r10000.tif
layername: egv_392
English name: Fractional cover of Coniferous Forests within the 10 km landscape
Latvian name: Skujkoku mežu platības īpatsvars 10 km ainavā
Procedure:
6.393 ForestsTrees_Mixed_cell
filename: ForestsTrees_Mixed_cell.tif
layername: egv_393
English name: Fractional cover of Mixed Forests within the analysis cell (1 ha)
Latvian name: Jauktu koku mežu platības īpatsvars analīzes šūnā (1 ha)
Procedure:
6.394 ForestsTrees_Mixed_r500
filename: ForestsTrees_Mixed_r500.tif
layername: egv_394
English name: Fractional cover of Mixed Forests within the 0.5 km landscape
Latvian name: Jauktu koku mežu platības īpatsvars 0,5 km ainavā
Procedure:
6.395 ForestsTrees_Mixed_r1250
filename: ForestsTrees_Mixed_r1250.tif
layername: egv_395
English name: Fractional cover of Mixed Forests within the 1.25 km landscape
Latvian name: Jauktu koku mežu platības īpatsvars 1,25 km ainavā
Procedure:
6.396 ForestsTrees_Mixed_r3000
filename: ForestsTrees_Mixed_r3000.tif
layername: egv_396
English name: Fractional cover of Mixed Forests within the 3 km landscape
Latvian name: Jauktu koku mežu platības īpatsvars 3 km ainavā
Procedure:
6.397 ForestsTrees_Mixed_r10000
filename: ForestsTrees_Mixed_r10000.tif
layername: egv_397
English name: Fractional cover of Mixed Forests within the 10 km landscape
Latvian name: Jauktu koku mežu platības īpatsvars 10 km ainavā
Procedure:
6.398 ForestsTrees_TemperateDeciduous_cell
filename: ForestsTrees_TemperateDeciduous_cell.tif
layername: egv_398
English name: Fractional cover of Temperate Deciduous Forests within the analysis cell (1 ha)
Latvian name: Platlapju mežu platības īpatsvars analīzes šūnā (1 ha)
Procedure:
6.399 ForestsTrees_TemperateDeciduous_r500
filename: ForestsTrees_TemperateDeciduous_r500.tif
layername: egv_399
English name: Fractional cover of Temperate Deciduous Forests within the 0.5 km landscape
Latvian name: Platlapju mežu platības īpatsvars 0,5 km ainavā
Procedure:
6.400 ForestsTrees_TemperateDeciduous_r1250
filename: ForestsTrees_TemperateDeciduous_r1250.tif
layername: egv_400
English name: Fractional cover of Temperate Deciduous Forests within the 1.25 km landscape
Latvian name: Platlapju mežu platības īpatsvars 1,25 km ainavā
Procedure:
6.401 ForestsTrees_TemperateDeciduous_r3000
filename: ForestsTrees_TemperateDeciduous_r3000.tif
layername: egv_401
English name: Fractional cover of Temperate Deciduous Forests within the 3 km landscape
Latvian name: Platlapju mežu platības īpatsvars 3 km ainavā
Procedure:
6.402 ForestsTrees_TemperateDeciduous_r10000
filename: ForestsTrees_TemperateDeciduous_r10000.tif
layername: egv_402
English name: Fractional cover of Temperate Deciduous Forests within the 10 km landscape
Latvian name: Platlapju mežu platības īpatsvars 10 km ainavā
Procedure:
6.403 General_AllotmentGardens_cell
filename: General_AllotmentGardens_cell.tif
layername: egv_403
English name: Fractional cover of Allotment gardens within the analysis cell (1 ha)
Latvian name: Vasarnīcu kompleksu platības īpatsvars analīzes šūnā (1 ha)
Procedure:
6.404 General_AllotmentGardens_r500
filename: General_AllotmentGardens_r500.tif
layername: egv_404
English name: Fractional cover of Allotment gardens within the 0.5 km landscape
Latvian name: Vasarnīcu kompleksu platības īpatsvars 0,5 km ainavā
Procedure:
6.405 General_AllotmentGardens_r1250
filename: General_AllotmentGardens_r1250.tif
layername: egv_405
English name: Fractional cover of Allotment gardens within the 1.25 km landscape
Latvian name: Vasarnīcu kompleksu platības īpatsvars 1,25 km ainavā
Procedure:
6.406 General_AllotmentGardens_r3000
filename: General_AllotmentGardens_r3000.tif
layername: egv_406
English name: Fractional cover of Allotment gardens within the 3 km landscape
Latvian name: Vasarnīcu kompleksu platības īpatsvars 3 km ainavā
Procedure:
6.407 General_AllotmentGardens_r10000
filename: General_AllotmentGardens_r10000.tif
layername: egv_407
English name: Fractional cover of Allotment gardens within the 10 km landscape
Latvian name: Vasarnīcu kompleksu platības īpatsvars 10 km ainavā
Procedure:
6.408 General_BareSoilQuarry_cell
filename: General_BareSoilQuarry_cell.tif
layername: egv_408
English name: Fractional cover of areas with Bare Soil, Quarries within the analysis cell (1 ha)
Latvian name: Atklātas augsnes un karjeru platības īpatsvars analīzes šūnā (1 ha)
Procedure:
6.409 General_BareSoilQuarry_r500
filename: General_BareSoilQuarry_r500.tif
layername: egv_409
English name: Fractional cover of areas with Bare Soil, Quarries within the 0.5 km landscape
Latvian name: Atklātas augsnes un karjeru platības īpatsvars 0,5 km ainavā
Procedure:
6.410 General_BareSoilQuarry_r1250
filename: General_BareSoilQuarry_r1250.tif
layername: egv_410
English name: Fractional cover of areas with Bare Soil, Quarries within the 1.25 km landscape
Latvian name: Atklātas augsnes un karjeru platības īpatsvars 1,25 km ainavā
Procedure:
6.411 General_BareSoilQuarry_r3000
filename: General_BareSoilQuarry_r3000.tif
layername: egv_411
English name: Fractional cover of areas with Bare Soil, Quarries within the 3 km landscape
Latvian name: Atklātas augsnes un karjeru platības īpatsvars 3 km ainavā
Procedure:
6.412 General_BareSoilQuarry_r10000
filename: General_BareSoilQuarry_r10000.tif
layername: egv_412
English name: Fractional cover of areas with Bare Soil, Quarries within the 10 km landscape
Latvian name: Atklātas augsnes un karjeru platības īpatsvars 10 km ainavā
Procedure:
6.413 General_Builtup_cell
filename: General_Builtup_cell.tif
layername: egv_413
English name: Fractional cover of Built-Up areas within the analysis cell (1 ha)
Latvian name: Apbūves platības īpatsvars analīzes šūnā (1 ha)
Procedure:
6.414 General_Builtup_r500
filename: General_Builtup_r500.tif
layername: egv_414
English name: Fractional cover of Built-Up areas within the 0.5 km landscape
Latvian name: Apbūves platības īpatsvars 0,5 km ainavā
Procedure:
6.415 General_Builtup_r1250
filename: General_Builtup_r1250.tif
layername: egv_415
English name: Fractional cover of Built-Up areas within the 1.25 km landscape
Latvian name: Apbūves platības īpatsvars 1,25 km ainavā
Procedure:
6.416 General_Builtup_r3000
filename: General_Builtup_r3000.tif
layername: egv_416
English name: Fractional cover of Built-Up areas within the 3 km landscape
Latvian name: Apbūves platības īpatsvars 3 km ainavā
Procedure:
6.417 General_Builtup_r10000
filename: General_Builtup_r10000.tif
layername: egv_417
English name: Fractional cover of Built-Up areas within the 10 km landscape
Latvian name: Apbūves platības īpatsvars 10 km ainavā
Procedure:
6.418 General_Farmland_cell
filename: General_Farmland_cell.tif
layername: egv_418
English name: Fractional cover of Farmland within the analysis cell (1 ha)
Latvian name: Lauksaimniecībā izmantojamo zemju platības īpatsvars analīzes šūnā (1 ha)
Procedure:
6.419 General_Farmland_r500
filename: General_Farmland_r500.tif
layername: egv_419
English name: Fractional cover of Farmland within the 0.5 km landscape
Latvian name: Lauksaimniecībā izmantojamo zemju platības īpatsvars 0,5 km ainavā
Procedure:
6.420 General_Farmland_r1250
filename: General_Farmland_r1250.tif
layername: egv_420
English name: Fractional cover of Farmland within the 1.25 km landscape
Latvian name: Lauksaimniecībā izmantojamo zemju platības īpatsvars 1,25 km ainavā
Procedure:
6.421 General_Farmland_r3000
filename: General_Farmland_r3000.tif
layername: egv_421
English name: Fractional cover of Farmland within the 3 km landscape
Latvian name: Lauksaimniecībā izmantojamo zemju platības īpatsvars 3 km ainavā
Procedure:
6.422 General_Farmland_r10000
filename: General_Farmland_r10000.tif
layername: egv_422
English name: Fractional cover of Farmland within the 10 km landscape
Latvian name: Lauksaimniecībā izmantojamo zemju platības īpatsvars 10 km ainavā
Procedure:
6.423 General_ForestsWithoutInventory_cell
filename: General_ForestsWithoutInventory_cell.tif
layername: egv_423
English name: Fractional cover of Forests Without Inventory within the analysis cell (1 ha)
Latvian name: Netaksēto mežu platības īpatsvars analīzes šūnā (1 ha)
Procedure:
6.424 General_ForestsWithoutInventory_r500
filename: General_ForestsWithoutInventory_r500.tif
layername: egv_424
English name: Fractional cover of Forests Without Inventory within the 0.5 km landscape
Latvian name: Netaksēto mežu platības īpatsvars 0,5 km ainavā
Procedure:
6.425 General_ForestsWithoutInventory_r1250
filename: General_ForestsWithoutInventory_r1250.tif
layername: egv_425
English name: Fractional cover of Forests Without Inventory within the 1.25 km landscape
Latvian name: Netaksēto mežu platības īpatsvars 1,25 km ainavā
Procedure:
6.426 General_ForestsWithoutInventory_r3000
filename: General_ForestsWithoutInventory_r3000.tif
layername: egv_426
English name: Fractional cover of Forests Without Inventory within the 3 km landscape
Latvian name: Netaksēto mežu platības īpatsvars 3 km ainavā
Procedure:
6.427 General_ForestsWithoutInventory_r10000
filename: General_ForestsWithoutInventory_r10000.tif
layername: egv_427
English name: Fractional cover of Forests Without Inventory within the 10 km landscape
Latvian name: Netaksēto mežu platības īpatsvars 10 km ainavā
Procedure:
6.428 General_GardensOrchards_cell
filename: General_GardensOrchards_cell.tif
layername: egv_428
English name: Fractional cover of Allotment gardens, Orchards within the analysis cell (1 ha)
Latvian name: Vasarnīcu kompleksu un augļudārzu platības īpatsvars analīzes šūnā (1 ha)
Procedure:
6.429 General_GardensOrchards_r500
filename: General_GardensOrchards_r500.tif
layername: egv_429
English name: Fractional cover of Allotment gardens, Orchards within the 0.5 km landscape
Latvian name: Vasarnīcu kompleksu un augļudārzu platības īpatsvars 0,5 km ainavā
Procedure:
6.430 General_GardensOrchards_r1250
filename: General_GardensOrchards_r1250.tif
layername: egv_430
English name: Fractional cover of Allotment gardens, Orchards within the 1.25 km landscape
Latvian name: Vasarnīcu kompleksu un augļudārzu platības īpatsvars 1,25 km ainavā
Procedure:
6.431 General_GardensOrchards_r3000
filename: General_GardensOrchards_r3000.tif
layername: egv_431
English name: Fractional cover of Allotment gardens, Orchards within the 3 km landscape
Latvian name: Vasarnīcu kompleksu un augļudārzu platības īpatsvars 3 km ainavā
Procedure:
6.432 General_GardensOrchards_r10000
filename: General_GardensOrchards_r10000.tif
layername: egv_432
English name: Fractional cover of Allotment gardens, Orchards within the 10 km landscape
Latvian name: Vasarnīcu kompleksu un augļudārzu platības īpatsvars 10 km ainavā
Procedure:
6.433 General_Roads_cell
filename: General_Roads_cell.tif
layername: egv_433
English name: Fractional cover of Roads within the analysis cell (1 ha)
Latvian name: Ceļu platības īpatsvars analīzes šūnā (1 ha)
Procedure:
6.434 General_ShrubsOrchards_cell
filename: General_ShrubsOrchards_cell.tif
layername: egv_434
English name: Fractional cover of Shrubs, Young stands, Orchards within the analysis cell (1 ha)
Latvian name: Krūmāju, jaunaudžu un augļudārzu platības īpatsvars analīzes šūnā (1 ha)
Procedure:
6.435 General_ShrubsOrchards_r500
filename: General_ShrubsOrchards_r500.tif
layername: egv_435
English name: Fractional cover of Shrubs, Young stands, Orchards within the 0.5 km landscape
Latvian name: Krūmāju, jaunaudžu un augļudārzu platības īpatsvars 0,5 km ainavā
Procedure:
6.436 General_ShrubsOrchards_r1250
filename: General_ShrubsOrchards_r1250.tif
layername: egv_436
English name: Fractional cover of Shrubs, Young stands, Orchards within the 1.25 km landscape
Latvian name: Krūmāju, jaunaudžu un augļudārzu platības īpatsvars 1,25 km ainavā
Procedure:
6.437 General_ShrubsOrchards_r3000
filename: General_ShrubsOrchards_r3000.tif
layername: egv_437
English name: Fractional cover of Shrubs, Young stands, Orchards within the 3 km landscape
Latvian name: Krūmāju, jaunaudžu un augļudārzu platības īpatsvars 3 km ainavā
Procedure:
6.438 General_ShrubsOrchards_r10000
filename: General_ShrubsOrchards_r10000.tif
layername: egv_438
English name: Fractional cover of Shrubs, Young stands, Orchards within the 10 km landscape
Latvian name: Krūmāju, jaunaudžu un augļudārzu platības īpatsvars 10 km ainavā
Procedure:
6.439 General_ShrubsOrchardsGardens_cell
filename: General_ShrubsOrchardsGardens_cell.tif
layername: egv_439
English name: Fractional cover of Shrubs, Young stands, Orchards, Allotment gardens within the analysis cell (1 ha)
Latvian name: Krūmāju, jaunaudžu, augļudārzu un vasarnīcu kompleksu platības īpatsvars analīzes šūnā (1 ha)
Procedure:
6.440 General_ShrubsOrchardsGardens_r500
filename: General_ShrubsOrchardsGardens_r500.tif
layername: egv_440
English name: Fractional cover of Shrubs, Young stands, Orchards, Allotment gardens within the 0.5 km landscape
Latvian name: Krūmāju, jaunaudžu, augļudārzu un vasarnīcu kompleksu platības īpatsvars 0,5 km ainavā
Procedure:
6.441 General_ShrubsOrchardsGardens_r1250
filename: General_ShrubsOrchardsGardens_r1250.tif
layername: egv_441
English name: Fractional cover of Shrubs, Young stands, Orchards, Allotment gardens within the 1.25 km landscape
Latvian name: Krūmāju, jaunaudžu, augļudārzu un vasarnīcu kompleksu platības īpatsvars 1,25 km ainavā
Procedure:
6.442 General_ShrubsOrchardsGardens_r3000
filename: General_ShrubsOrchardsGardens_r3000.tif
layername: egv_442
English name: Fractional cover of Shrubs, Young stands, Orchards, Allotment gardens within the 3 km landscape
Latvian name: Krūmāju, jaunaudžu, augļudārzu un vasarnīcu kompleksu platības īpatsvars 3 km ainavā
Procedure:
6.443 General_ShrubsOrchardsGardens_r10000
filename: General_ShrubsOrchardsGardens_r10000.tif
layername: egv_443
English name: Fractional cover of Shrubs, Young stands, Orchards, Allotment gardens within the 10 km landscape
Latvian name: Krūmāju, jaunaudžu, augļudārzu un vasarnīcu kompleksu platības īpatsvars 10 km ainavā
Procedure:
6.444 General_SwampsMiresBogsHelophytes_cell
filename: General_SwampsMiresBogsHelophytes_cell.tif
layername: egv_444
English name: Fractional cover of Swamps, Mires, Bogs, Reed-, Sedge-, Rush- Beds within the analysis cell (1 ha)
Latvian name: Purvu, niedrāju, grīslāju, meldrāju platības īpatsvars analīzes šūnā (1 ha)
Procedure:
6.445 General_SwampsMiresBogsHelophytes_r500
filename: General_SwampsMiresBogsHelophytes_r500.tif
layername: egv_445
English name: Fractional cover of Swamps, Mires, Bogs, Reed-, Sedge-, Rush- Beds within the 0.5 km landscape
Latvian name: Purvu, niedrāju, grīslāju, meldrāju platības īpatsvars 0,5 km ainavā
Procedure:
6.446 General_SwampsMiresBogsHelophytes_r1250
filename: General_SwampsMiresBogsHelophytes_r1250.tif
layername: egv_446
English name: Fractional cover of Swamps, Mires, Bogs, Reed-, Sedge-, Rush- Beds within the 1.25 km landscape
Latvian name: Purvu, niedrāju, grīslāju, meldrāju platības īpatsvars 1,25 km ainavā
Procedure:
6.447 General_SwampsMiresBogsHelophytes_r3000
filename: General_SwampsMiresBogsHelophytes_r3000.tif
layername: egv_447
English name: Fractional cover of Swamps, Mires, Bogs, Reed-, Sedge-, Rush- Beds within the 3 km landscape
Latvian name: Purvu, niedrāju, grīslāju, meldrāju platības īpatsvars 3 km ainavā
Procedure:
6.448 General_SwampsMiresBogsHelophytes_r10000
filename: General_SwampsMiresBogsHelophytes_r10000.tif
layername: egv_448
English name: Fractional cover of Swamps, Mires, Bogs, Reed-, Sedge-, Rush- Beds within the 10 km landscape
Latvian name: Purvu, niedrāju, grīslāju, meldrāju platības īpatsvars 10 km ainavā
Procedure:
6.449 General_Trees_cell
filename: General_Trees_cell.tif
layername: egv_449
English name: Fractional cover of Trees, Shrubs, Clear-cuts within the analysis cell (1 ha)
Latvian name: Koku, krūmu un izcirtumu platības īpatsvars analīzes šūnā (1 ha)
Procedure:
6.450 General_Trees_r500
filename: General_Trees_r500.tif
layername: egv_450
English name: Fractional cover of Trees, Shrubs, Clear-cuts within the 0.5 km landscape
Latvian name: Koku, krūmu un izcirtumu platības īpatsvars 0,5 km ainavā
Procedure:
6.451 General_Trees_r1250
filename: General_Trees_r1250.tif
layername: egv_451
English name: Fractional cover of Trees, Shrubs, Clear-cuts within the 1.25 km landscape
Latvian name: Koku, krūmu un izcirtumu platības īpatsvars 1,25 km ainavā
Procedure:
6.452 General_Trees_r3000
filename: General_Trees_r3000.tif
layername: egv_452
English name: Fractional cover of Trees, Shrubs, Clear-cuts within the 3 km landscape
Latvian name: Koku, krūmu un izcirtumu platības īpatsvars 3 km ainavā
Procedure:
6.453 General_Trees_r10000
filename: General_Trees_r10000.tif
layername: egv_453
English name: Fractional cover of Trees, Shrubs, Clear-cuts within the 10 km landscape
Latvian name: Koku, krūmu un izcirtumu platības īpatsvars 10 km ainavā
Procedure:
6.454 General_TreesOutsideForests_cell
filename: General_TreesOutsideForests_cell.tif
layername: egv_454
English name: Fractional cover of Tree covered areas Outside Forests within the analysis cell (1 ha)
Latvian name: Ar kokiem klāto teritoriju ārpus mežiem platības īpatsvars analīzes šūnā (1 ha)
Procedure:
6.455 General_TreesOutsideForests_r500
filename: General_TreesOutsideForests_r500.tif
layername: egv_455
English name: Fractional cover of Tree covered areas Outside Forests within the 0.5 km landscape
Latvian name: Ar kokiem klāto teritoriju ārpus mežiem platības īpatsvars 0,5 km ainavā
Procedure:
6.456 General_TreesOutsideForests_r1250
filename: General_TreesOutsideForests_r1250.tif
layername: egv_456
English name: Fractional cover of Tree covered areas Outside Forests within the 1.25 km landscape
Latvian name: Ar kokiem klāto teritoriju ārpus mežiem platības īpatsvars 1,25 km ainavā
Procedure:
6.457 General_TreesOutsideForests_r3000
filename: General_TreesOutsideForests_r3000.tif
layername: egv_457
English name: Fractional cover of Tree covered areas Outside Forests within the 3 km landscape
Latvian name: Ar kokiem klāto teritoriju ārpus mežiem platības īpatsvars 3 km ainavā
Procedure:
6.458 General_TreesOutsideForests_r10000
filename: General_TreesOutsideForests_r10000.tif
layername: egv_458
English name: Fractional cover of Tree covered areas Outside Forests within the 10 km landscape
Latvian name: Ar kokiem klāto teritoriju ārpus mežiem platības īpatsvars 10 km ainavā
Procedure:
6.459 General_Water_cell
filename: General_Water_cell.tif
layername: egv_459
English name: Fractional cover of Waterbodies within the analysis cell (1 ha)
Latvian name: Ūdenstilpju platības īpatsvars analīzes šūnā (1 ha)
Procedure:
6.460 General_Water_r500
filename: General_Water_r500.tif
layername: egv_460
English name: Fractional cover of Waterbodies within the 0.5 km landscape
Latvian name: Ūdenstilpju platības īpatsvars 0,5 km ainavā
Procedure:
6.461 General_Water_r1250
filename: General_Water_r1250.tif
layername: egv_461
English name: Fractional cover of Waterbodies within the 1.25 km landscape
Latvian name: Ūdenstilpju platības īpatsvars 1,25 km ainavā
Procedure:
6.462 General_Water_r3000
filename: General_Water_r3000.tif
layername: egv_462
English name: Fractional cover of Waterbodies within the 3 km landscape
Latvian name: Ūdenstilpju platības īpatsvars 3 km ainavā
Procedure:
6.463 General_Water_r10000
filename: General_Water_r10000.tif
layername: egv_463
English name: Fractional cover of Waterbodies within the 10 km landscape
Latvian name: Ūdenstilpju platības īpatsvars 10 km ainavā
Procedure:
6.464 Wetlands_Bogs_cell
filename: Wetlands_Bogs_cell.tif
layername: egv_464
English name: Fractional cover of Raised Bogs within the analysis cell (1 ha)
Latvian name: Augsto purvu platības īpatsvars analīzes šūnā (1 ha)
Procedure:
6.465 Wetlands_Bogs_r500
filename: Wetlands_Bogs_r500.tif
layername: egv_465
English name: Fractional cover of Raised Bogs within the 0.5 km landscape
Latvian name: Augsto purvu platības īpatsvars 0,5 km ainavā
Procedure:
6.466 Wetlands_Bogs_r1250
filename: Wetlands_Bogs_r1250.tif
layername: egv_466
English name: Fractional cover of Raised Bogs within the 1.25 km landscape
Latvian name: Augsto purvu platības īpatsvars 1,25 km ainavā
Procedure:
6.467 Wetlands_Bogs_r3000
filename: Wetlands_Bogs_r3000.tif
layername: egv_467
English name: Fractional cover of Raised Bogs within the 3 km landscape
Latvian name: Augsto purvu platības īpatsvars 3 km ainavā
Procedure:
6.468 Wetlands_Bogs_r10000
filename: Wetlands_Bogs_r10000.tif
layername: egv_468
English name: Fractional cover of Raised Bogs within the 10 km landscape
Latvian name: Augsto purvu platības īpatsvars 10 km ainavā
Procedure:
6.469 Wetlands_Mires_cell
filename: Wetlands_Mires_cell.tif
layername: egv_469
English name: Fractional cover of Transitional Mires within the analysis cell (1 ha)
Latvian name: Pārejas purvu platības īpatsvars analīzes šūnā (1 ha)
Procedure:
6.470 Wetlands_Mires_r500
filename: Wetlands_Mires_r500.tif
layername: egv_470
English name: Fractional cover of Transitional Mires within the 0.5 km landscape
Latvian name: Pārejas purvu platības īpatsvars 0,5 km ainavā
Procedure:
6.471 Wetlands_Mires_r1250
filename: Wetlands_Mires_r1250.tif
layername: egv_471
English name: Fractional cover of Transitional Mires within the 1.25 km landscape
Latvian name: Pārejas purvu platības īpatsvars 1,25 km ainavā
Procedure:
6.472 Wetlands_Mires_r3000
filename: Wetlands_Mires_r3000.tif
layername: egv_472
English name: Fractional cover of Transitional Mires within the 3 km landscape
Latvian name: Pārejas purvu platības īpatsvars 3 km ainavā
Procedure:
6.473 Wetlands_Mires_r10000
filename: Wetlands_Mires_r10000.tif
layername: egv_473
English name: Fractional cover of Transitional Mires within the 10 km landscape
Latvian name: Pārejas purvu platības īpatsvars 10 km ainavā
Procedure:
6.474 Wetlands_ReedSedgeRushBeds_cell
filename: Wetlands_ReedSedgeRushBeds_cell.tif
layername: egv_474
English name: Fractional cover of Reed-, Sedge-, Rush-, Beds within the analysis cell (1 ha)
Latvian name: Niedrāju, grīslāju, meldrāju platības īpatsvars analīzes šūnā (1 ha)
Procedure:
6.475 Wetlands_ReedSedgeRushBeds_r500
filename: Wetlands_ReedSedgeRushBeds_r500.tif
layername: egv_475
English name: Fractional cover of Reed-, Sedge-, Rush-, Beds within the 0.5 km landscape
Latvian name: Niedrāju, grīslāju, meldrāju platības īpatsvars 0,5 km ainavā
Procedure:
6.476 Wetlands_ReedSedgeRushBeds_r1250
filename: Wetlands_ReedSedgeRushBeds_r1250.tif
layername: egv_476
English name: Fractional cover of Reed-, Sedge-, Rush-, Beds within the 1.25 km landscape
Latvian name: Niedrāju, grīslāju, meldrāju platības īpatsvars 1,25 km ainavā
Procedure:
6.477 Wetlands_ReedSedgeRushBeds_r3000
filename: Wetlands_ReedSedgeRushBeds_r3000.tif
layername: egv_477
English name: Fractional cover of Reed-, Sedge-, Rush-, Beds within the 3 km landscape
Latvian name: Niedrāju, grīslāju, meldrāju platības īpatsvars 3 km ainavā
Procedure:
6.478 Wetlands_ReedSedgeRushBeds_r10000
filename: Wetlands_ReedSedgeRushBeds_r10000.tif
layername: egv_478
English name: Fractional cover of Reed-, Sedge-, Rush-, Beds within the 10 km landscape
Latvian name: Niedrāju, grīslāju, meldrāju platības īpatsvars 10 km ainavā
Procedure:
6.479 EO_NDMI-LYmed-average_cell
filename: EO_NDMI-LYmed-average_cell.tif
layername: egv_479
English name: Median vegetation water content (NDMI) for the last year within the analysis cell (1 ha)
Latvian name: Mediānā pēdējā gada ūdens satura veģetācijā indeksa (NDMI) vērtība, vidējais analīzes šūnā (1 ha)
Procedure: Directly follows preprocessing. Arithmetic mean value at analysis cell
calculated with egvtools::input2egv()
. To protect against possible data loss at edge cells,
inverse distance weighted (power = 2) gap filling is implemented. Last year is 2024.
Code
# libs ----
if(!require(egvtools)) {remotes::install_github("aavotins/egvtools"); require(egvtools)}
# EO_NDMI-LYmed-average_cell.tif ----
egvrez=input2egv(input="./Geodata/2024/S2indices/Mosaics/EO_NDMI-LYmedian.tif",
egv_template= "./Templates/TemplateRasters/LV100m_10km.tif",
summary_function = "average",
missing_job = "FillOutput",
outlocation = "./RasterGrids_100m/2024/RAW/",
outfilename = "EO_NDMI-LYmed-average_cell.tif",
layername = "egv_479",
idw_weight = 2,
plot_gaps = FALSE,
plot_final = FALSE)
egvrez
6.480 EO_NDMI-LYmedian-iqr_cell
filename: EO_NDMI-LYmedian-iqr_cell.tif
layername: egv_480
English name: Spatial variability of last year’s median vegetation water content (NDMI) within the analysis cell (1 ha)
Latvian name: Telpiskā variabilitāte pēdējā gada mediānajai ūdens saturam veģetācijā indeksa (NDMI) vērtībai, starpkvartiļu apgabals analīzes šūnā (1 ha)
Procedure: Directly follows preprocessing. First Q1 and then Q3
is calculated for every cell with egvtools::input2egv()
. Finally, subtracting
Q1 from Q3 and writing final raster with specified layername. To protect against possible data loss at edge cells,
inverse distance weighted (power = 2) gap filling is implemented. Last year is 2024.
Code
# libs ----
if(!require(egvtools)) {remotes::install_github("aavotins/egvtools"); require(egvtools)}
# EO_NDMI-LYmedian-iqr_cell.tif ----
p25rez=input2egv(input="./Geodata/2024/S2indices/Mosaics/EO_NDMI-LYmedian.tif",
egv_template= "./Templates/TemplateRasters/LV100m_10km.tif",
summary_function = "q1",
missing_job = "FillOutput",
outlocation = "./RasterGrids_100m/2024/",
outfilename = "draza_p25.tif",
layername = "egv_480",
idw_weight = 2,
plot_gaps = FALSE,
plot_final = FALSE)
p25rez_r=rast("./RasterGrids_100m/2024/draza_p25.tif")
p75rez=input2egv(input="./Geodata/2024/S2indices/Mosaics/EO_NDMI-LYmedian.tif",
egv_template= "./Templates/TemplateRasters/LV100m_10km.tif",
summary_function = "q3",
missing_job = "FillOutput",
outlocation = "./RasterGrids_100m/2024/",
outfilename = "draza_p75.tif",
layername = "egv_480",
idw_weight = 2,
plot_gaps = FALSE,
plot_final = FALSE)
p75rez_r=rast("./RasterGrids_100m/2024/draza_p75.tif")
iqr_rez=p75rez_r-p25rez_r
iqr_rez
plot(iqr_rez)
writeRaster(iqr_rez,
"./RasterGrids_100m/2024/RAW/EO_NDMI-LYmedian-iqr_cell.tif",
overwrite=TRUE)
unlink("./RasterGrids_100m/2024/draza_p75.tif")
unlink("./RasterGrids_100m/2024/draza_p25.tif")
6.481 EO_NDMI-STiqr-median_cell
filename: EO_NDMI-STiqr-median_cell.tif
layername: egv_481
English name: Average short-term seasonality of vegetation water content (NDMI) within the analysis cell (1 ha)
Latvian name: Sezonalitāte pēdējo piecu gadu vidējam ūdens satura veģetācijā indeksa (NDMI) vērtībai, vidējais analīzes šūnā (1 ha)
Procedure: Directly follows preprocessing. Arithmetic mean value at analysis cell
calculated with egvtools::input2egv()
. To protect against possible data loss at edge cells,
inverse distance weighted (power = 2) gap filling is implemented. Short-term is last five years (2020-2024).
Code
# libs ----
if(!require(egvtools)) {remotes::install_github("aavotins/egvtools"); require(egvtools)}
# EO_NDMI-STiqr-median_cell.tif ----
egvrez=input2egv(input="./Geodata/2024/S2indices/Mosaics/EO_NDMI-STiqr.tif",
egv_template= "./Templates/TemplateRasters/LV100m_10km.tif",
summary_function = "average",
missing_job = "FillOutput",
outlocation = "./RasterGrids_100m/2024/RAW/",
outfilename = "EO_NDMI-STiqr-median_cell.tif",
layername = "egv_481",
idw_weight = 2,
plot_gaps = FALSE,
plot_final = FALSE)
egvrez
6.482 EO_NDMI-STmedian-average_cell
filename: EO_NDMI-STmedian-average_cell.tif
layername: egv_482
English name: Median short-term vegetation water content (NDMI) within the analysis cell (1 ha)
Latvian name: Mediānā pēdējo piecu gadu ūdens satura veģetācijā indeksa (NDMI) vērtība, vidējais analīzes šūnā (1 ha)
Procedure: Directly follows preprocessing. Arithmetic mean value at analysis cell
calculated with egvtools::input2egv()
. To protect against possible data loss at edge cells,
inverse distance weighted (power = 2) gap filling is implemented. Short-term is last five years (2020-2024).
Code
# libs ----
if(!require(egvtools)) {remotes::install_github("aavotins/egvtools"); require(egvtools)}
# EO_NDMI-STmedian-average_cell.tif ----
egvrez=input2egv(input="./Geodata/2024/S2indices/Mosaics/EO_NDMI-STmedian.tif",
egv_template= "./Templates/TemplateRasters/LV100m_10km.tif",
summary_function = "average",
missing_job = "FillOutput",
outlocation = "./RasterGrids_100m/2024/RAW/",
outfilename = "EO_NDMI-STmedian-average_cell.tif",
layername = "egv_482",
idw_weight = 2,
plot_gaps = FALSE,
plot_final = FALSE)
egvrez
6.483 EO_NDMI-STmedian-iqr_cell
filename: EO_NDMI-STmedian-iqr_cell.tif
layername: egv_483
English name: Spatial variability of short-term median vegetation water content (NDMI) within the analysis cell (1 ha)
Latvian name: Telpiskā variabilitāte pēdējo piecu gadu mediānajai ūdens saturam veģetācijā indeksa (NDMI) vērtībai, starpkvartiļu apgabals analīzes šūnā (1 ha)
Procedure: Directly follows preprocessing. First Q1 and then Q3
is calculated for every cell with egvtools::input2egv()
. Finally, subtracting
Q1 from Q3 and writing final raster with specified layername. To protect against possible data loss at edge cells,
inverse distance weighted (power = 2) gap filling is implemented. Short-term corresponds
to last five years (2020-2024).
Code
# libs ----
if(!require(egvtools)) {remotes::install_github("aavotins/egvtools"); require(egvtools)}
# EO_NDMI-STmedian-iqr_cell.tif ----
p25rez=input2egv(input="./Geodata/2024/S2indices/Mosaics/EO_NDMI-STmedian.tif",
egv_template= "./Templates/TemplateRasters/LV100m_10km.tif",
summary_function = "q1",
missing_job = "FillOutput",
outlocation = "./RasterGrids_100m/2024/",
outfilename = "draza_p25.tif",
layername = "egv_483",
idw_weight = 2,
plot_gaps = FALSE,
plot_final = FALSE)
p25rez_r=rast("./RasterGrids_100m/2024/draza_p25.tif")
p75rez=input2egv(input="./Geodata/2024/S2indices/Mosaics/EO_NDMI-STmedian.tif",
egv_template= "./Templates/TemplateRasters/LV100m_10km.tif",
summary_function = "q3",
missing_job = "FillOutput",
outlocation = "./RasterGrids_100m/2024/",
outfilename = "draza_p75.tif",
layername = "egv_483",
idw_weight = 2,
plot_gaps = FALSE,
plot_final = FALSE)
p75rez_r=rast("./RasterGrids_100m/2024/draza_p75.tif")
iqr_rez=p75rez_r-p25rez_r
iqr_rez
plot(iqr_rez)
writeRaster(iqr_rez,
"./RasterGrids_100m/2024/RAW/EO_NDMI-STmedian-iqr_cell.tif",
overwrite=TRUE)
unlink("./RasterGrids_100m/2024/draza_p75.tif")
unlink("./RasterGrids_100m/2024/draza_p25.tif")
6.484 EO_NDMI-STp25-min_cell
filename: EO_NDMI-STp25-min_cell.tif
layername: egv_484
English name: Minimum short-term 25th percentile of vegetation water content (NDMI) within the analysis cell (1 ha)
Latvian name: Minimālā 25. procentiles pēdējo piecu gadu ūdens satura veģetācijā indeksa (NDMI) vērtība, vidējais analīzes šūnā (1 ha)
Procedure: Directly follows preprocessing. Minimum value at analysis cell
calculated with egvtools::input2egv()
. To protect against possible data loss at edge cells,
inverse distance weighted (power = 2) gap filling is implemented. Short-term is last five years (2020-2024).
Code
# libs ----
if(!require(egvtools)) {remotes::install_github("aavotins/egvtools"); require(egvtools)}
# EO_NDMI-STp25-min_cell.tif ----
egvrez=input2egv(input="./Geodata/2024/S2indices/Mosaics/EO_NDMI-STp25.tif",
egv_template= "./Templates/TemplateRasters/LV100m_10km.tif",
summary_function = "min",
missing_job = "FillOutput",
outlocation = "./RasterGrids_100m/2024/RAW/",
outfilename = "EO_NDMI-STp25-min_cell.tif",
layername = "egv_484",
idw_weight = 2,
plot_gaps = FALSE,
plot_final = FALSE)
egvrez
6.485 EO_NDMI-STp75-max_cell
filename: EO_NDMI-STp75-max_cell.tif
layername: egv_485
English name: Maximum short-term 75th percentile of vegetation water content (NDMI) within the analysis cell (1 ha)
Latvian name: Maksimālā 75. procentiles pēdējo piecu gadu ūdens satura veģetācijā indeksa (NDMI) vērtība, vidējais analīzes šūnā (1 ha)
Procedure: Directly follows preprocessing. Maximum value at analysis cell
calculated with egvtools::input2egv()
. To protect against possible data loss at edge cells,
inverse distance weighted (power = 2) gap filling is implemented. Short-term is last five years (2020-2024).
Code
# libs ----
if(!require(egvtools)) {remotes::install_github("aavotins/egvtools"); require(egvtools)}
# EO_NDMI-STp75-max_cell.tif ----
egvrez=input2egv(input="./Geodata/2024/S2indices/Mosaics/EO_NDMI-STp75.tif",
egv_template= "./Templates/TemplateRasters/LV100m_10km.tif",
summary_function = "min",
missing_job = "FillOutput",
outlocation = "./RasterGrids_100m/2024/RAW/",
outfilename = "EO_NDMI-STp75-max_cell.tif",
layername = "egv_485",
idw_weight = 2,
plot_gaps = FALSE,
plot_final = FALSE)
egvrez
6.486 EO_NDVI-LYmedian-average_cell
filename: EO_NDVI-LYmedian-average_cell.tif
layername: egv_486
English name: Median vegetation index (NDVI) for the last year within the analysis cell (1 ha)
Latvian name: Mediānā pēdējā gada veģetācijas indeksa (NDVI) vērtība, vidējais analīzes šūnā (1 ha)
Procedure: Directly follows preprocessing. Arithmetic mean value at analysis cell
calculated with egvtools::input2egv()
. To protect against possible data loss at edge cells,
inverse distance weighted (power = 2) gap filling is implemented. Last year is 2024.
Code
# libs ----
if(!require(egvtools)) {remotes::install_github("aavotins/egvtools"); require(egvtools)}
# EO_NDVI-LYmedian-average_cell.tif ----
egvrez=input2egv(input="./Geodata/2024/S2indices/Mosaics/EO_NDVI-LYmedian.tif",
egv_template= "./Templates/TemplateRasters/LV100m_10km.tif",
summary_function = "average",
missing_job = "FillOutput",
outlocation = "./RasterGrids_100m/2024/RAW/",
outfilename = "EO_NDVI-LYmedian-average_cell.tif",
layername = "egv_486",
idw_weight = 2,
plot_gaps = FALSE,
plot_final = FALSE)
egvrez
6.487 EO_NDVI-LYmedian-iqr_cell
filename: EO_NDVI-LYmedian-iqr_cell.tif
layername: egv_487
English name: Spatial variability of last year’s median vegetation index (NDVI) within the analysis cell (1 ha)
Latvian name: Telpiskā variabilitāte pēdējā gada mediānajai veģetācijas indeksa (NDVI) vērtībai, starpkvartiļu apgabals analīzes šūnā (1 ha)
Procedure: Directly follows preprocessing. First Q1 and then Q3
is calculated for every cell with egvtools::input2egv()
. Finally, subtracting
Q1 from Q3 and writing final raster with specified layername. To protect against possible data loss at edge cells,
inverse distance weighted (power = 2) gap filling is implemented. Last year is 2024.
Code
# libs ----
if(!require(egvtools)) {remotes::install_github("aavotins/egvtools"); require(egvtools)}
# EO_NDVI-LYmedian-iqr_cell.tif ----
p25rez=input2egv(input="./Geodata/2024/S2indices/Mosaics/EO_NDVI-LYmedian.tif",
egv_template= "./Templates/TemplateRasters/LV100m_10km.tif",
summary_function = "q1",
missing_job = "FillOutput",
outlocation = "./RasterGrids_100m/2024/",
outfilename = "draza_p25.tif",
layername = "egv_487",
idw_weight = 2,
plot_gaps = FALSE,
plot_final = FALSE)
p25rez_r=rast("./RasterGrids_100m/2024/draza_p25.tif")
p75rez=input2egv(input="./Geodata/2024/S2indices/Mosaics/EO_NDVI-LYmedian.tif",
egv_template= "./Templates/TemplateRasters/LV100m_10km.tif",
summary_function = "q3",
missing_job = "FillOutput",
outlocation = "./RasterGrids_100m/2024/",
outfilename = "draza_p75.tif",
layername = "egv_487",
idw_weight = 2,
plot_gaps = FALSE,
plot_final = FALSE)
p75rez_r=rast("./RasterGrids_100m/2024/draza_p75.tif")
iqr_rez=p75rez_r-p25rez_r
iqr_rez
plot(iqr_rez)
writeRaster(iqr_rez,
"./RasterGrids_100m/2024/RAW/EO_NDVI-LYmedian-iqr_cell.tif",
overwrite=TRUE)
unlink("./RasterGrids_100m/2024/draza_p75.tif")
unlink("./RasterGrids_100m/2024/draza_p25.tif")
6.488 EO_NDVI-STiqr-median_cell
filename: EO_NDVI-STiqr-median_cell.tif
layername: egv_488
English name: Average short-term seasonality of vegetation index (NDVI) within the analysis cell (1 ha)
Latvian name: Sezonalitāte pēdējo piecu gadu vidējam veģetācijas indeksa (NDVI) vērtībai, vidējais analīzes šūnā (1 ha)
Procedure: Directly follows preprocessing. Arithmetic mean value at analysis cell
calculated with egvtools::input2egv()
. To protect against possible data loss at edge cells,
inverse distance weighted (power = 2) gap filling is implemented. Short-term is last five years (2020-2024).
Code
# libs ----
if(!require(egvtools)) {remotes::install_github("aavotins/egvtools"); require(egvtools)}
# EO_NDVI-STiqr-median_cell.tif ----
egvrez=input2egv(input="./Geodata/2024/S2indices/Mosaics/EO_NDVI-STiqr.tif",
egv_template= "./Templates/TemplateRasters/LV100m_10km.tif",
summary_function = "average",
missing_job = "FillOutput",
outlocation = "./RasterGrids_100m/2024/RAW/",
outfilename = "EO_NDVI-STiqr-median_cell.tif",
layername = "egv_488",
idw_weight = 2,
plot_gaps = FALSE,
plot_final = FALSE)
egvrez
6.489 EO_NDVI-STmedian-average_cell
filename: EO_NDVI-STmedian-average_cell.tif
layername: egv_489
English name: Median short-term vegetation index (NDVI) within the analysis cell (1 ha)
Latvian name: Mediānā pēdējo piecu gadu veģetācijas indeksa (NDVI) vērtība, vidējais analīzes šūnā (1 ha)
Procedure: Directly follows preprocessing. Arithmetic mean value at analysis cell
calculated with egvtools::input2egv()
. To protect against possible data loss at edge cells,
inverse distance weighted (power = 2) gap filling is implemented. Short-term is last five years (2020-2024).
Code
# libs ----
if(!require(egvtools)) {remotes::install_github("aavotins/egvtools"); require(egvtools)}
# EO_NDVI-STmedian-average_cell.tif ----
egvrez=input2egv(input="./Geodata/2024/S2indices/Mosaics/EO_NDVI-STmedian.tif",
egv_template= "./Templates/TemplateRasters/LV100m_10km.tif",
summary_function = "average",
missing_job = "FillOutput",
outlocation = "./RasterGrids_100m/2024/RAW/",
outfilename = "EO_NDVI-STmedian-average_cell.tif",
layername = "egv_489",
idw_weight = 2,
plot_gaps = FALSE,
plot_final = FALSE)
egvrez
6.490 EO_NDVI-STmedian-iqr_cell
filename: EO_NDVI-STmedian-iqr_cell.tif
layername: egv_490
English name: Spatial variability of short-term median vegetation index (NDVI) within the analysis cell (1 ha)
Latvian name: Telpiskā variabilitāte pēdējo piecu gadu mediānajai veģetācijas indeksa (NDVI) vērtībai, starpkvartiļu apgabals analīzes šūnā (1 ha)
Procedure: Directly follows preprocessing. First Q1 and then Q3
is calculated for every cell with egvtools::input2egv()
. Finally, subtracting
Q1 from Q3 and writing final raster with specified layername. To protect against possible data loss at edge cells,
inverse distance weighted (power = 2) gap filling is implemented. Short-term corresponds
to last five years (2020-2024).
Code
# libs ----
if(!require(egvtools)) {remotes::install_github("aavotins/egvtools"); require(egvtools)}
# EO_NDVI-STmedian-iqr_cell.tif ----
p25rez=input2egv(input="./Geodata/2024/S2indices/Mosaics/EO_NDVI-STmedian.tif",
egv_template= "./Templates/TemplateRasters/LV100m_10km.tif",
summary_function = "q1",
missing_job = "FillOutput",
outlocation = "./RasterGrids_100m/2024/",
outfilename = "draza_p25.tif",
layername = "egv_490",
idw_weight = 2,
plot_gaps = FALSE,
plot_final = FALSE)
p25rez_r=rast("./RasterGrids_100m/2024/draza_p25.tif")
p75rez=input2egv(input="./Geodata/2024/S2indices/Mosaics/EO_NDVI-STmedian.tif",
egv_template= "./Templates/TemplateRasters/LV100m_10km.tif",
summary_function = "q3",
missing_job = "FillOutput",
outlocation = "./RasterGrids_100m/2024/",
outfilename = "draza_p75.tif",
layername = "egv_490",
idw_weight = 2,
plot_gaps = FALSE,
plot_final = FALSE)
p75rez_r=rast("./RasterGrids_100m/2024/draza_p75.tif")
iqr_rez=p75rez_r-p25rez_r
iqr_rez
plot(iqr_rez)
writeRaster(iqr_rez,
"./RasterGrids_100m/2024/RAW/EO_NDVI-STmedian-iqr_cell.tif",
overwrite=TRUE)
unlink("./RasterGrids_100m/2024/draza_p75.tif")
unlink("./RasterGrids_100m/2024/draza_p25.tif")
6.491 EO_NDVI-STp25-min_cell
filename: EO_NDVI-STp25-min_cell.tif
layername: egv_491
English name: Minimum short-term 25th percentile of vegetation index (NDVI) within the analysis cell (1 ha)
Latvian name: Minimālā 25. procentiles pēdējo piecu gadu veģetācijas indeksa (NDVI) vērtība, vidējais analīzes šūnā (1 ha)
Procedure: Directly follows preprocessing. Minimum value at analysis cell
calculated with egvtools::input2egv()
. To protect against possible data loss at edge cells,
inverse distance weighted (power = 2) gap filling is implemented. Short-term is last five years (2020-2024).
Code
# libs ----
if(!require(egvtools)) {remotes::install_github("aavotins/egvtools"); require(egvtools)}
# EO_NDVI-STp25-min_cell.tif ----
egvrez=input2egv(input="./Geodata/2024/S2indices/Mosaics/EO_NDVI-STp25.tif",
egv_template= "./Templates/TemplateRasters/LV100m_10km.tif",
summary_function = "min",
missing_job = "FillOutput",
outlocation = "./RasterGrids_100m/2024/RAW/",
outfilename = "EO_NDVI-STp25-min_cell.tif",
layername = "egv_491",
idw_weight = 2,
plot_gaps = FALSE,
plot_final = FALSE)
egvrez
6.492 EO_NDVI-STp75-max_cell
filename: EO_NDVI-STp75-max_cell.tif
layername: egv_492
English name: Maximum short-term 75th percentile of vegetation index (NDVI) within the analysis cell (1 ha)
Latvian name: Maksimālā 75. procentiles pēdējo piecu gadu veģetācijas indeksa (NDVI) vērtība, vidējais analīzes šūnā (1 ha)
Procedure: Directly follows preprocessing. Maximum value at analysis cell
calculated with egvtools::input2egv()
. To protect against possible data loss at edge cells,
inverse distance weighted (power = 2) gap filling is implemented. Short-term is last five years (2020-2024).
Code
# libs ----
if(!require(egvtools)) {remotes::install_github("aavotins/egvtools"); require(egvtools)}
# EO_NDVI-STp75-max_cell.tif ----
egvrez=input2egv(input="./Geodata/2024/S2indices/Mosaics/EO_NDVI-STp75.tif",
egv_template= "./Templates/TemplateRasters/LV100m_10km.tif",
summary_function = "min",
missing_job = "FillOutput",
outlocation = "./RasterGrids_100m/2024/RAW/",
outfilename = "EO_NDVI-STp75-max_cell.tif",
layername = "egv_492",
idw_weight = 2,
plot_gaps = FALSE,
plot_final = FALSE)
egvrez
6.493 EO_NDWI-LYmedian-average_cell
filename: EO_NDWI-LYmedian-average_cell.tif
layername: egv_493
English name: Median water index (NDWI) for the last year within the analysis cell (1 ha)
Latvian name: Mediānā pēdējā gada ūdens indeksa (NDWI) vērtība, vidējais analīzes šūnā (1 ha)
Procedure: Directly follows preprocessing. Arithmetic mean value at analysis cell
calculated with egvtools::input2egv()
. To protect against possible data loss at edge cells,
inverse distance weighted (power = 2) gap filling is implemented. Last year is 2024.
Code
# libs ----
if(!require(egvtools)) {remotes::install_github("aavotins/egvtools"); require(egvtools)}
egvrez=input2egv(input="./Geodata/2024/S2indices/Mosaics/EO_NDWI-LYmedian.tif",
egv_template= "./Templates/TemplateRasters/LV100m_10km.tif",
summary_function = "average",
missing_job = "FillOutput",
outlocation = "./RasterGrids_100m/2024/RAW/",
outfilename = "EO_NDWI-LYmedian-average_cell.tif",
layername = "egv_493",
idw_weight = 2,
plot_gaps = FALSE,
plot_final = FALSE)
egvrez
6.494 EO_NDWI-LYmedian-iqr_cell
filename: EO_NDWI-LYmedian-iqr_cell.tif
layername: egv_494
English name: Spatial variability of last year’s median water index (NDWI) within the analysis cell (1 ha)
Latvian name: Telpiskā variabilitāte pēdējā gada mediānajai ūdens indeksa (NDWI) vērtībai, starpkvartiļu apgabals analīzes šūnā (1 ha)
Procedure: Directly follows preprocessing. First Q1 and then Q3
is calculated for every cell with egvtools::input2egv()
. Finally, subtracting
Q1 from Q3 and writing final raster with specified layername. To protect against possible data loss at edge cells,
inverse distance weighted (power = 2) gap filling is implemented. Last year is 2024.
Code
# libs ----
if(!require(egvtools)) {remotes::install_github("aavotins/egvtools"); require(egvtools)}
# EO_NDWI-LYmedian-iqr_cell.tif ----
p25rez=input2egv(input="./Geodata/2024/S2indices/Mosaics/EO_NDWI-LYmedian.tif",
egv_template= "./Templates/TemplateRasters/LV100m_10km.tif",
summary_function = "q1",
missing_job = "FillOutput",
outlocation = "./RasterGrids_100m/2024/",
outfilename = "draza_p25.tif",
layername = "egv_494",
idw_weight = 2,
plot_gaps = FALSE,
plot_final = FALSE)
p25rez_r=rast("./RasterGrids_100m/2024/draza_p25.tif")
p75rez=input2egv(input="./Geodata/2024/S2indices/Mosaics/EO_NDWI-LYmedian.tif",
egv_template= "./Templates/TemplateRasters/LV100m_10km.tif",
summary_function = "q3",
missing_job = "FillOutput",
outlocation = "./RasterGrids_100m/2024/",
outfilename = "draza_p75.tif",
layername = "egv_494",
idw_weight = 2,
plot_gaps = FALSE,
plot_final = FALSE)
p75rez_r=rast("./RasterGrids_100m/2024/draza_p75.tif")
iqr_rez=p75rez_r-p25rez_r
iqr_rez
plot(iqr_rez)
writeRaster(iqr_rez,
"./RasterGrids_100m/2024/RAW/EO_NDWI-LYmedian-iqr_cell.tif",
overwrite=TRUE)
unlink("./RasterGrids_100m/2024/draza_p75.tif")
unlink("./RasterGrids_100m/2024/draza_p25.tif")
6.495 EO_NDWI-STiqr-median_cell
filename: EO_NDWI-STiqr-median_cell.tif
layername: egv_495
English name: Average short-term seasonality of water index (NDWI) within the analysis cell (1 ha)
Latvian name: Sezonalitāte pēdējo piecu gadu vidējam ūdens indeksa (NDWI) vērtībai, vidējais analīzes šūnā (1 ha)
Procedure: Directly follows preprocessing. Arithmetic mean value at analysis cell
calculated with egvtools::input2egv()
. To protect against possible data loss at edge cells,
inverse distance weighted (power = 2) gap filling is implemented. Short-term is last five years (2020-2024).
Code
# libs ----
if(!require(egvtools)) {remotes::install_github("aavotins/egvtools"); require(egvtools)}
# EO_NDWI-STiqr-median_cell.tif ----
egvrez=input2egv(input="./Geodata/2024/S2indices/Mosaics/EO_NDWI-STiqr.tif",
egv_template= "./Templates/TemplateRasters/LV100m_10km.tif",
summary_function = "average",
missing_job = "FillOutput",
outlocation = "./RasterGrids_100m/2024/RAW/",
outfilename = "EO_NDWI-STiqr-median_cell.tif",
layername = "egv_495",
idw_weight = 2,
plot_gaps = FALSE,
plot_final = FALSE)
egvrez
6.496 EO_NDWI-STmedian-average_cell
filename: EO_NDWI-STmedian-average_cell.tif
layername: egv_496
English name: Median short-term water index (NDWI) within the analysis cell (1 ha)
Latvian name: Mediānā pēdējo piecu gadu ūdens indeksa (NDWI) vērtība, vidējais analīzes šūnā (1 ha)
Procedure: Directly follows preprocessing. Arithmetic mean value at analysis cell
calculated with egvtools::input2egv()
. To protect against possible data loss at edge cells,
inverse distance weighted (power = 2) gap filling is implemented. Short-term is last five years (2020-2024).
Code
# libs ----
if(!require(egvtools)) {remotes::install_github("aavotins/egvtools"); require(egvtools)}
# EO_NDWI-STmedian-average_cell.tif ----
egvrez=input2egv(input="./Geodata/2024/S2indices/Mosaics/EO_NDWI-STmedian.tif",
egv_template= "./Templates/TemplateRasters/LV100m_10km.tif",
summary_function = "average",
missing_job = "FillOutput",
outlocation = "./RasterGrids_100m/2024/RAW/",
outfilename = "EO_NDWI-STmedian-average_cell.tif",
layername = "egv_496",
idw_weight = 2,
plot_gaps = FALSE,
plot_final = FALSE)
egvrez
6.497 EO_NDWI-STmedian-iqr_cell
filename: EO_NDWI-STmedian-iqr_cell.tif
layername: egv_497
English name: Spatial variability of short-term median water index (NDWI) within the analysis cell (1 ha)
Latvian name: Telpiskā variabilitāte pēdējo piecu gadu mediānajai ūdens indeksa (NDWI) vērtībai, starpkvartiļu apgabals analīzes šūnā (1 ha)
Procedure: Directly follows preprocessing. First Q1 and then Q3
is calculated for every cell with egvtools::input2egv()
. Finally, subtracting
Q1 from Q3 and writing final raster with specified layername. To protect against possible data loss at edge cells,
inverse distance weighted (power = 2) gap filling is implemented. Short-term corresponds
to last five years (2020-2024).
Code
# libs ----
if(!require(egvtools)) {remotes::install_github("aavotins/egvtools"); require(egvtools)}
# EO_NDWI-STmedian-iqr_cell.tif ----
p25rez=input2egv(input="./Geodata/2024/S2indices/Mosaics/EO_NDWI-STmedian.tif",
egv_template= "./Templates/TemplateRasters/LV100m_10km.tif",
summary_function = "q1",
missing_job = "FillOutput",
outlocation = "./RasterGrids_100m/2024/",
outfilename = "draza_p25.tif",
layername = "egv_497",
idw_weight = 2,
plot_gaps = FALSE,
plot_final = FALSE)
p25rez_r=rast("./RasterGrids_100m/2024/draza_p25.tif")
p75rez=input2egv(input="./Geodata/2024/S2indices/Mosaics/EO_NDWI-STmedian.tif",
egv_template= "./Templates/TemplateRasters/LV100m_10km.tif",
summary_function = "q3",
missing_job = "FillOutput",
outlocation = "./RasterGrids_100m/2024/",
outfilename = "draza_p75.tif",
layername = "egv_497",
idw_weight = 2,
plot_gaps = FALSE,
plot_final = FALSE)
p75rez_r=rast("./RasterGrids_100m/2024/draza_p75.tif")
iqr_rez=p75rez_r-p25rez_r
iqr_rez
plot(iqr_rez)
writeRaster(iqr_rez,
"./RasterGrids_100m/2024/RAW/EO_NDWI-STmedian-iqr_cell.tif",
overwrite=TRUE)
unlink("./RasterGrids_100m/2024/draza_p75.tif")
unlink("./RasterGrids_100m/2024/draza_p25.tif")
6.498 EO_NDWI-STp25-min_cell
filename: EO_NDWI-STp25-min_cell.tif
layername: egv_498
English name: Minimum short-term 25th percentile of water index (NDWI) within the analysis cell (1 ha)
Latvian name: Minimālā 25. procentiles pēdējo piecu gadu ūdens indeksa (NDWI) vērtība, vidējais analīzes šūnā (1 ha)
Procedure: Directly follows preprocessing. Minimum value at analysis cell
calculated with egvtools::input2egv()
. To protect against possible data loss at edge cells,
inverse distance weighted (power = 2) gap filling is implemented. Short-term is last five years (2020-2024).
Code
# libs ----
if(!require(egvtools)) {remotes::install_github("aavotins/egvtools"); require(egvtools)}
# EO_NDWI-STp25-min_cell.tif ----
egvrez=input2egv(input="./Geodata/2024/S2indices/Mosaics/EO_NDWI-STp25.tif",
egv_template= "./Templates/TemplateRasters/LV100m_10km.tif",
summary_function = "min",
missing_job = "FillOutput",
outlocation = "./RasterGrids_100m/2024/RAW/",
outfilename = "EO_NDWI-STp25-min_cell.tif",
layername = "egv_498",
idw_weight = 2,
plot_gaps = FALSE,
plot_final = FALSE)
egvrez
6.499 EO_NDWI-STp75-max_cell
filename: EO_NDWI-STp75-max_cell.tif
layername: egv_499
English name: Maximum short-term 75th percentile of water index (NDWI) within the analysis cell (1 ha)
Latvian name: Maksimālā 75. procentiles pēdējo piecu gadu ūdens indeksa (NDWI) vērtība, vidējais analīzes šūnā (1 ha)
Procedure: Directly follows preprocessing. Maximum value at analysis cell
calculated with egvtools::input2egv()
. To protect against possible data loss at edge cells,
inverse distance weighted (power = 2) gap filling is implemented. Short-term is last five years (2020-2024).
Code
# libs ----
if(!require(egvtools)) {remotes::install_github("aavotins/egvtools"); require(egvtools)}
# EO_NDWI-STp75-max_cell.tif ----
egvrez=input2egv(input="./Geodata/2024/S2indices/Mosaics/EO_NDWI-STp75.tif",
egv_template= "./Templates/TemplateRasters/LV100m_10km.tif",
summary_function = "min",
missing_job = "FillOutput",
outlocation = "./RasterGrids_100m/2024/RAW/",
outfilename = "EO_NDWI-STp75-max_cell.tif",
layername = "egv_499",
idw_weight = 2,
plot_gaps = FALSE,
plot_final = FALSE)
egvrez
6.500 SoilChemistry_ESDAC-CN_cell
filename: SoilChemistry_ESDAC-CN_cell.tif
layername: egv_500
English name: Average value of Topsoil Carbon-Nitrogen ratio (ESDAC v2.0) within the analysis cell (1 ha)
Latvian name: Augsnes virskārtas oglekļa-slāpekļa attiecība (ESDAC v2.0) analīzes šūnā (1 ha)
Procedure: Directly derived from Soil chemistry. Processed
with egvtools::downscale2egv()
with fill gaps = TRUE
performing inverse
distance weighted (power = 2) filling of gaps at the border and smooth = FALSE
to keep as original values as reasonable (there is bilinear interpolation
involved when projecting from 500 m to 100 m resolution of different CRS).
Code
# libs ----
if(!require(egvtools)) {remotes::install_github("aavotins/egvtools"); require(egvtools)}
# CN ----
egv=downscale2egv(
template_path = "./Templates/TemplateRasters/LV100m_10km.tif",
grid_path = "./Templates/TemplateGrids/tikls1km_sauzeme.parquet",
rawfile_path = "./Geodata/2024/Soils/ESDAC/chemistry/chemistry/CN/CN.tif",
out_path = "./RasterGrids_100m/2024/RAW/",
file_name = "SoilChemistry_ESDAC-CN_cell.tif",
layer_name = "egv_500",
fill_gaps = TRUE,
smooth = FALSE,
plot_result = TRUE)
egv
6.501 SoilChemistry_ESDAC-CaCo3_cell
filename: SoilChemistry_ESDAC-CaCo3_cell.tif
layername: egv_501
English name: Average value of Topsoil Calcium Carbonates Content (ESDAC v2.0) within the analysis cell (1 ha)
Latvian name: Augsnes virskārtas kalcija karbonātu apjoms (ESDAC v2.0) analīzes šūnā (1 ha)
Procedure: Directly derived from Soil chemistry. Processed
with egvtools::downscale2egv()
with fill gaps = TRUE
performing inverse
distance weighted (power = 2) filling of gaps at the border and smooth = FALSE
to keep as original values as reasonable (there is bilinear interpolation
involved when projecting from 500 m to 100 m resolution of different CRS).
Code
# libs ----
if(!require(egvtools)) {remotes::install_github("aavotins/egvtools"); require(egvtools)}
# CaCO3 ----
egv=downscale2egv(
template_path = "./Templates/TemplateRasters/LV100m_10km.tif",
grid_path = "./Templates/TemplateGrids/tikls1km_sauzeme.parquet",
rawfile_path = "./Geodata/2024/Soils/ESDAC/chemistry/chemistry/Caco3/CaCO3.tif",
out_path = "./RasterGrids_100m/2024/RAW/",
file_name = "SoilChemistry_ESDAC-CaCo3_cell.tif",
layer_name = "egv_501",
fill_gaps = TRUE,
smooth = FALSE,
plot_result = TRUE)
egv
6.502 SoilChemistry_ESDAC-K_cell
filename: SoilChemistry_ESDAC-K_cell.tif
layername: egv_502
English name: Average value of Topsoil Sodium Content (ESDAC v2.0) within the analysis cell (1 ha)
Latvian name: Augsnes virskārtas kālija apjoms (ESDAC v2.0) analīzes šūnā (1 ha)
Procedure: Directly derived from Soil chemistry. Processed
with egvtools::downscale2egv()
with fill gaps = TRUE
performing inverse
distance weighted (power = 2) filling of gaps at the border and smooth = FALSE
to keep as original values as reasonable (there is bilinear interpolation
involved when projecting from 500 m to 100 m resolution of different CRS).
Code
# libs ----
if(!require(egvtools)) {remotes::install_github("aavotins/egvtools"); require(egvtools)}
# K ----
egv=downscale2egv(
template_path = "./Templates/TemplateRasters/LV100m_10km.tif",
grid_path = "./Templates/TemplateGrids/tikls1km_sauzeme.parquet",
rawfile_path = "./Geodata/2024/Soils/ESDAC/chemistry/chemistry/K/K.tif",
out_path = "./RasterGrids_100m/2024/RAW/",
file_name = "SoilChemistry_ESDAC-K_cell.tif",
layer_name = "egv_502",
fill_gaps = TRUE,
smooth = FALSE,
plot_result = TRUE)
egv
6.503 SoilChemistry_ESDAC-N_cell
filename: SoilChemistry_ESDAC-N_cell.tif
layername: egv_503
English name: Average value of Topsoil Nitrogen Content (ESDAC v2.0) within the analysis cell (1 ha)
Latvian name: Augsnes virskārtas slāpekļa apjoms (ESDAC v2.0) analīzes šūnā (1 ha)
Procedure: Directly derived from Soil chemistry. Processed
with egvtools::downscale2egv()
with fill gaps = TRUE
performing inverse
distance weighted (power = 2) filling of gaps at the border and smooth = FALSE
to keep as original values as reasonable (there is bilinear interpolation
involved when projecting from 500 m to 100 m resolution of different CRS).
Code
# libs ----
if(!require(egvtools)) {remotes::install_github("aavotins/egvtools"); require(egvtools)}
# N ----
egv=downscale2egv(
template_path = "./Templates/TemplateRasters/LV100m_10km.tif",
grid_path = "./Templates/TemplateGrids/tikls1km_sauzeme.parquet",
rawfile_path = "./Geodata/2024/Soils/ESDAC/chemistry/chemistry/N/N.tif",
out_path = "./RasterGrids_100m/2024/RAW/",
file_name = "SoilChemistry_ESDAC-N_cell.tif",
layer_name = "egv_503",
fill_gaps = TRUE,
smooth = FALSE,
plot_result = TRUE)
egv
6.504 SoilChemistry_ESDAC-P_cell
filename: SoilChemistry_ESDAC-P_cell.tif
layername: egv_504
English name: Average value of Topsoil Phosphorous Content (ESDAC v2.0) within the analysis cell (1 ha)
Latvian name: Augsnes virskārtas fosfora apjoms (ESDAC v2.0) analīzes šūnā (1 ha)
Procedure: Directly derived from Soil chemistry. Processed
with egvtools::downscale2egv()
with fill gaps = TRUE
performing inverse
distance weighted (power = 2) filling of gaps at the border and smooth = FALSE
to keep as original values as reasonable (there is bilinear interpolation
involved when projecting from 500 m to 100 m resolution of different CRS).
Code
# libs ----
if(!require(egvtools)) {remotes::install_github("aavotins/egvtools"); require(egvtools)}
# P ----
egv=downscale2egv(
template_path = "./Templates/TemplateRasters/LV100m_10km.tif",
grid_path = "./Templates/TemplateGrids/tikls1km_sauzeme.parquet",
rawfile_path = "./Geodata/2024/Soils/ESDAC/chemistry/chemistry/P/P.tif",
out_path = "./RasterGrids_100m/2024/RAW/",
file_name = "SoilChemistry_ESDAC-P_cell.tif",
layer_name = "egv_504",
fill_gaps = TRUE,
smooth = FALSE,
plot_result = TRUE)
egv
6.505 SoilChemistry_ESDAC-phH2O_cell
filename: SoilChemistry_ESDAC-phH2O_cell.tif
layername: egv_505
English name: Average value of Topsoil pH reaction in water (ESDAC v2.0) within the analysis cell (1 ha)
Latvian name: Augsnes virskārtas reakcija (pH) ūdens šķīdumā (ESDAC v2.0) analīzes šūnā (1 ha)
Procedure: Directly derived from Soil chemistry. Processed
with egvtools::downscale2egv()
with fill gaps = TRUE
performing inverse
distance weighted (power = 2) filling of gaps at the border and smooth = FALSE
to keep as original values as reasonable (there is bilinear interpolation
involved when projecting from 500 m to 100 m resolution of different CRS).
Code
# libs ----
if(!require(egvtools)) {remotes::install_github("aavotins/egvtools"); require(egvtools)}
# pH_H2O ----
egv=downscale2egv(
template_path = "./Templates/TemplateRasters/LV100m_10km.tif",
grid_path = "./Templates/TemplateGrids/tikls1km_sauzeme.parquet",
rawfile_path = "./Geodata/2024/Soils/ESDAC/chemistry/chemistry/pH_H2O/pH_H2O.tif",
out_path = "./RasterGrids_100m/2024/RAW/",
file_name = "SoilChemistry_ESDAC-phH2O_cell.tif",
layer_name = "egv_505",
fill_gaps = TRUE,
smooth = FALSE,
plot_result = TRUE)
egv
6.506 SoilTexture_Clay_cell
filename: SoilTexture_Clay_cell.tif
layername: egv_506
English name: Fractional cover of Clay Soils within the analysis cell (1 ha)
Latvian name: Augsnes granulometriskās klases “māls” platības īpatsvars analīzes šūnā (1 ha)
Procedure: Derived from Soil texture product. First, layer is
reclassified so that class of interest is 1, other classes are 0. Then processed
with egvtools::input2egv()
with fill gaps = TRUE
performing inverse
distance weighted (power = 2) filling of gaps at the border.
Code
# libs ----
if(!require(terra)) {install.packages("terra"); require(terra)}
if(!require(egvtools)) {remotes::install_github("aavotins/egvtools"); require(egvtools)}
# templates ----
template10=rast("./Templates/TemplateRasters/LV10m_10km.tif")
template100=rast("./Templates/TemplateRasters/LV100m_10km.tif")
# input ----
combtext=rast("./RasterGrids_10m/2024/SoilTXT_combined.tif")
# EGVs cell ----
# SoilTexture_Clay_cell.tif egv_506
clay10=ifel(combtext==3,1,0)
input2egv(input=clay10,
egv_template="./Templates/TemplateRasters/LV100m_10km.tif",
summary_function = "average",
missing_job = "FillOutput",
idw_weight = 2,
outlocation = "./RasterGrids_100m/2024/RAW/",
outfilename = "SoilTexture_Clay_cell.tif",
layername="egv_506",
return_visible = TRUE)
6.507 SoilTexture_Clay_r500
filename: SoilTexture_Clay_r500.tif
layername: egv_507
English name: Fractional cover of Clay Soils within the 0.5 km landscape
Latvian name: Augsnes granulometriskās klases “māls” platības īpatsvars 0,5 km ainavā
Procedure: Derived from SoilTexture_Clay_cell. First processed
with egvtools::radius_function()
, then rewritten to ensure layername. To protect against
possible data loss at edge cells, inverse distance weighted (power = 2) gap filling
is implemented.
Code
# libs ----
if(!require(terra)) {install.packages("terra"); require(terra)}
if(!require(egvtools)) {remotes::install_github("aavotins/egvtools"); require(egvtools)}
# EGVs radii ----
radius_function(
kvadrati_path = "./Templates/TemplateGrids/tiles/",
radii_path = "./Templates/TemplateGridPoints/tiles/",
tikls100_path = "./Templates/TemplateGrids/tikls100_sauzeme.parquet",
template_path = "./Templates/TemplateRasters/LV100m_10km.tif",
input_layers = c("./RasterGrids_100m/2024/RAW/SoilTexture_Clay_cell.tif"),
layer_prefixes = c("SoilTexture_Clay"),
output_dir = "./RasterGrids_100m/2024/RAW/",
n_workers = 5,
radii = c("r500"),
radius_mode = "sparse",
extract_fun = "mean",
fill_missing = TRUE,
IDW_weight = 2,
future_max_size = 5 * 1024^3)
# SoilTexture_Clay_r500.tif egv_507
slanis=rast("./RasterGrids_100m/2024/RAW/SoilTexture_Clay_r500.tif")
names(slanis)="egv_507"
slanis2=project(slanis,template100)
writeRaster(slanis2,
"./RasterGrids_100m/2024/RAW/SoilTexture_Clay_r500.tif",
overwrite=TRUE)
6.508 SoilTexture_Clay_r1250
filename: SoilTexture_Clay_r1250.tif
layername: egv_508
English name: Fractional cover of Clay Soils within the 1.25 km landscape
Latvian name: Augsnes granulometriskās klases “māls” platības īpatsvars 1,25 km ainavā
Procedure: Derived from SoilTexture_Clay_cell. First processed
with egvtools::radius_function()
, then rewritten to ensure layername. To protect against
possible data loss at edge cells, inverse distance weighted (power = 2) gap filling
is implemented.
Code
# libs ----
if(!require(terra)) {install.packages("terra"); require(terra)}
if(!require(egvtools)) {remotes::install_github("aavotins/egvtools"); require(egvtools)}
# EGVs radii ----
radius_function(
kvadrati_path = "./Templates/TemplateGrids/tiles/",
radii_path = "./Templates/TemplateGridPoints/tiles/",
tikls100_path = "./Templates/TemplateGrids/tikls100_sauzeme.parquet",
template_path = "./Templates/TemplateRasters/LV100m_10km.tif",
input_layers = c("./RasterGrids_100m/2024/RAW/SoilTexture_Clay_cell.tif"),
layer_prefixes = c("SoilTexture_Clay"),
output_dir = "./RasterGrids_100m/2024/RAW/",
n_workers = 5,
radii = c("r1250"),
radius_mode = "sparse",
extract_fun = "mean",
fill_missing = TRUE,
IDW_weight = 2,
future_max_size = 5 * 1024^3)
# SoilTexture_Clay_r1250.tif egv_508
slanis=rast("./RasterGrids_100m/2024/RAW/SoilTexture_Clay_r1250.tif")
names(slanis)="egv_508"
slanis2=project(slanis,template100)
writeRaster(slanis2,
"./RasterGrids_100m/2024/RAW/SoilTexture_Clay_r1250.tif",
overwrite=TRUE)
6.509 SoilTexture_Clay_r3000
filename: SoilTexture_Clay_r3000.tif
layername: egv_509
English name: Fractional cover of Clay Soils within the 3 km landscape
Latvian name: Augsnes granulometriskās klases “māls” platības īpatsvars 3 km ainavā
Procedure: Derived from SoilTexture_Clay_cell. First processed
with egvtools::radius_function()
, then rewritten to ensure layername. To protect against
possible data loss at edge cells, inverse distance weighted (power = 2) gap filling
is implemented.
Code
# libs ----
if(!require(terra)) {install.packages("terra"); require(terra)}
if(!require(egvtools)) {remotes::install_github("aavotins/egvtools"); require(egvtools)}
# EGVs radii ----
radius_function(
kvadrati_path = "./Templates/TemplateGrids/tiles/",
radii_path = "./Templates/TemplateGridPoints/tiles/",
tikls100_path = "./Templates/TemplateGrids/tikls100_sauzeme.parquet",
template_path = "./Templates/TemplateRasters/LV100m_10km.tif",
input_layers = c("./RasterGrids_100m/2024/RAW/SoilTexture_Clay_cell.tif"),
layer_prefixes = c("SoilTexture_Clay"),
output_dir = "./RasterGrids_100m/2024/RAW/",
n_workers = 5,
radii = c("r3000"),
radius_mode = "sparse",
extract_fun = "mean",
fill_missing = TRUE,
IDW_weight = 2,
future_max_size = 5 * 1024^3)
# SoilTexture_Clay_r3000.tif egv_509
slanis=rast("./RasterGrids_100m/2024/RAW/SoilTexture_Clay_r3000.tif")
names(slanis)="egv_509"
slanis2=project(slanis,template100)
writeRaster(slanis2,
"./RasterGrids_100m/2024/RAW/SoilTexture_Clay_r3000.tif",
overwrite=TRUE)
6.510 SoilTexture_Clay_r10000
filename: SoilTexture_Clay_r10000.tif
layername: egv_510
English name: Fractional cover of Clay Soils within the 10 km landscape
Latvian name: Augsnes granulometriskās klases “māls” platības īpatsvars 10 km ainavā
Procedure: Derived from SoilTexture_Clay_cell. First processed
with egvtools::radius_function()
, then rewritten to ensure layername. To protect against
possible data loss at edge cells, inverse distance weighted (power = 2) gap filling
is implemented.
Code
# libs ----
if(!require(terra)) {install.packages("terra"); require(terra)}
if(!require(egvtools)) {remotes::install_github("aavotins/egvtools"); require(egvtools)}
# EGVs radii ----
radius_function(
kvadrati_path = "./Templates/TemplateGrids/tiles/",
radii_path = "./Templates/TemplateGridPoints/tiles/",
tikls100_path = "./Templates/TemplateGrids/tikls100_sauzeme.parquet",
template_path = "./Templates/TemplateRasters/LV100m_10km.tif",
input_layers = c("./RasterGrids_100m/2024/RAW/SoilTexture_Clay_cell.tif"),
layer_prefixes = c("SoilTexture_Clay"),
output_dir = "./RasterGrids_100m/2024/RAW/",
n_workers = 5,
radii = c("r10000"),
radius_mode = "sparse",
extract_fun = "mean",
fill_missing = TRUE,
IDW_weight = 2,
future_max_size = 5 * 1024^3)
# SoilTexture_Clay_r10000.tif egv_510
slanis=rast("./RasterGrids_100m/2024/RAW/SoilTexture_Clay_r10000.tif")
names(slanis)="egv_510"
slanis2=project(slanis,template100)
writeRaster(slanis2,
"./RasterGrids_100m/2024/RAW/SoilTexture_Clay_r10000.tif",
overwrite=TRUE)
6.511 SoilTexture_Organic_cell
filename: SoilTexture_Organic_cell.tif
layername: egv_511
English name: Fractional cover of Organic Soils within the analysis cell (1 ha)
Latvian name: Augsnes granulometriskās klases “organiskās augsnes” platības īpatsvars analīzes šūnā (1 ha)
Procedure: Derived from Soil texture product. First, layer is
reclassified so that class of interest is 1, other classes are 0. Then processed
with egvtools::input2egv()
with fill gaps = TRUE
performing inverse
distance weighted (power = 2) filling of gaps at the border.
Code
# libs ----
if(!require(terra)) {install.packages("terra"); require(terra)}
if(!require(egvtools)) {remotes::install_github("aavotins/egvtools"); require(egvtools)}
# templates ----
template10=rast("./Templates/TemplateRasters/LV10m_10km.tif")
template100=rast("./Templates/TemplateRasters/LV100m_10km.tif")
# input ----
combtext=rast("./RasterGrids_10m/2024/SoilTXT_combined.tif")
# EGVs cell ----
# SoilTexture_Organic_cell.tif egv_511
org10=ifel(combtext==4,1,0)
input2egv(input=org10,
egv_template="./Templates/TemplateRasters/LV100m_10km.tif",
summary_function = "average",
missing_job = "FillOutput",
idw_weight = 2,
outlocation = "./RasterGrids_100m/2024/RAW/",
outfilename = "SoilTexture_Organic_cell.tif",
layername="egv_511",
return_visible = TRUE)
6.512 SoilTexture_Organic_r500
filename: SoilTexture_Organic_r500.tif
layername: egv_512
English name: Fractional cover of Organic Soils within the 0.5 km landscape
Latvian name: Augsnes granulometriskās klases “organiskās augsnes” platības īpatsvars 0,5 km ainavā
Procedure: Derived from SoilTexture_Organic_cell. First processed
with egvtools::radius_function()
, then rewritten to ensure layername. To protect against
possible data loss at edge cells, inverse distance weighted (power = 2) gap filling
is implemented.
Code
# libs ----
if(!require(terra)) {install.packages("terra"); require(terra)}
if(!require(egvtools)) {remotes::install_github("aavotins/egvtools"); require(egvtools)}
# EGVs radii ----
radius_function(
kvadrati_path = "./Templates/TemplateGrids/tiles/",
radii_path = "./Templates/TemplateGridPoints/tiles/",
tikls100_path = "./Templates/TemplateGrids/tikls100_sauzeme.parquet",
template_path = "./Templates/TemplateRasters/LV100m_10km.tif",
input_layers = c("./RasterGrids_100m/2024/RAW/SoilTexture_Organic_cell.tif"),
layer_prefixes = c("SoilTexture_Organic"),
output_dir = "./RasterGrids_100m/2024/RAW/",
n_workers = 5,
radii = c("r500"),
radius_mode = "sparse",
extract_fun = "mean",
fill_missing = TRUE,
IDW_weight = 2,
future_max_size = 5 * 1024^3)
# SoilTexture_Organic_r500.tif egv_512
slanis=rast("./RasterGrids_100m/2024/RAW/SoilTexture_Organic_r500.tif")
names(slanis)="egv_512"
slanis2=project(slanis,template100)
writeRaster(slanis2,
"./RasterGrids_100m/2024/RAW/SoilTexture_Organic_r500.tif",
overwrite=TRUE)
6.513 SoilTexture_Organic_r1250
filename: SoilTexture_Organic_r1250.tif
layername: egv_513
English name: Fractional cover of Organic Soils within the 1.25 km landscape
Latvian name: Augsnes granulometriskās klases “organiskās augsnes” platības īpatsvars 1,25 km ainavā
Procedure: Derived from SoilTexture_Organic_cell. First processed
with egvtools::radius_function()
, then rewritten to ensure layername. To protect against
possible data loss at edge cells, inverse distance weighted (power = 2) gap filling
is implemented.
Code
# libs ----
if(!require(terra)) {install.packages("terra"); require(terra)}
if(!require(egvtools)) {remotes::install_github("aavotins/egvtools"); require(egvtools)}
# EGVs radii ----
radius_function(
kvadrati_path = "./Templates/TemplateGrids/tiles/",
radii_path = "./Templates/TemplateGridPoints/tiles/",
tikls100_path = "./Templates/TemplateGrids/tikls100_sauzeme.parquet",
template_path = "./Templates/TemplateRasters/LV100m_10km.tif",
input_layers = c("./RasterGrids_100m/2024/RAW/SoilTexture_Organic_cell.tif"),
layer_prefixes = c("SoilTexture_Organic"),
output_dir = "./RasterGrids_100m/2024/RAW/",
n_workers = 5,
radii = c("r1250"),
radius_mode = "sparse",
extract_fun = "mean",
fill_missing = TRUE,
IDW_weight = 2,
future_max_size = 5 * 1024^3)
# SoilTexture_Organic_r1250.tif egv_513
slanis=rast("./RasterGrids_100m/2024/RAW/SoilTexture_Organic_r1250.tif")
names(slanis)="egv_513"
slanis2=project(slanis,template100)
writeRaster(slanis2,
"./RasterGrids_100m/2024/RAW/SoilTexture_Organic_r1250.tif",
overwrite=TRUE)
6.514 SoilTexture_Organic_r3000
filename: SoilTexture_Organic_r3000.tif
layername: egv_514
English name: Fractional cover of Organic Soils within the 3 km landscape
Latvian name: Augsnes granulometriskās klases “organiskās augsnes” platības īpatsvars 3 km ainavā
Procedure: Derived from SoilTexture_Organic_cell. First processed
with egvtools::radius_function()
, then rewritten to ensure layername. To protect against
possible data loss at edge cells, inverse distance weighted (power = 2) gap filling
is implemented.
Code
# libs ----
if(!require(terra)) {install.packages("terra"); require(terra)}
if(!require(egvtools)) {remotes::install_github("aavotins/egvtools"); require(egvtools)}
# EGVs radii ----
radius_function(
kvadrati_path = "./Templates/TemplateGrids/tiles/",
radii_path = "./Templates/TemplateGridPoints/tiles/",
tikls100_path = "./Templates/TemplateGrids/tikls100_sauzeme.parquet",
template_path = "./Templates/TemplateRasters/LV100m_10km.tif",
input_layers = c("./RasterGrids_100m/2024/RAW/SoilTexture_Organic_cell.tif"),
layer_prefixes = c("SoilTexture_Organic"),
output_dir = "./RasterGrids_100m/2024/RAW/",
n_workers = 5,
radii = c("r3000"),
radius_mode = "sparse",
extract_fun = "mean",
fill_missing = TRUE,
IDW_weight = 2,
future_max_size = 5 * 1024^3)
# SoilTexture_Organic_r3000.tif egv_514
slanis=rast("./RasterGrids_100m/2024/RAW/SoilTexture_Organic_r3000.tif")
names(slanis)="egv_514"
slanis2=project(slanis,template100)
writeRaster(slanis2,
"./RasterGrids_100m/2024/RAW/SoilTexture_Organic_r3000.tif",
overwrite=TRUE)
6.515 SoilTexture_Organic_r10000
filename: SoilTexture_Organic_r10000.tif
layername: egv_515
English name: Fractional cover of Organic Soils within the 10 km landscape
Latvian name: Augsnes granulometriskās klases “organiskās augsnes” platības īpatsvars 10 km ainavā
Procedure: Derived from SoilTexture_Organic_cell. First processed
with egvtools::radius_function()
, then rewritten to ensure layername. To protect against
possible data loss at edge cells, inverse distance weighted (power = 2) gap filling
is implemented.
Code
# libs ----
if(!require(terra)) {install.packages("terra"); require(terra)}
if(!require(egvtools)) {remotes::install_github("aavotins/egvtools"); require(egvtools)}
# EGVs radii ----
radius_function(
kvadrati_path = "./Templates/TemplateGrids/tiles/",
radii_path = "./Templates/TemplateGridPoints/tiles/",
tikls100_path = "./Templates/TemplateGrids/tikls100_sauzeme.parquet",
template_path = "./Templates/TemplateRasters/LV100m_10km.tif",
input_layers = c("./RasterGrids_100m/2024/RAW/SoilTexture_Organic_cell.tif"),
layer_prefixes = c("SoilTexture_Organic"),
output_dir = "./RasterGrids_100m/2024/RAW/",
n_workers = 5,
radii = c("r10000"),
radius_mode = "sparse",
extract_fun = "mean",
fill_missing = TRUE,
IDW_weight = 2,
future_max_size = 5 * 1024^3)
# SoilTexture_Organic_r10000.tif egv_515
slanis=rast("./RasterGrids_100m/2024/RAW/SoilTexture_Organic_r10000.tif")
names(slanis)="egv_515"
slanis2=project(slanis,template100)
writeRaster(slanis2,
"./RasterGrids_100m/2024/RAW/SoilTexture_Organic_r10000.tif",
overwrite=TRUE)
6.516 SoilTexture_Sand_cell
filename: SoilTexture_Sand_cell.tif
layername: egv_516
English name: Fractional cover of Sand Soils within the analysis cell (1 ha)
Latvian name: Augsnes granulometriskās klases “smilts” platības īpatsvars analīzes šūnā (1 ha)
Procedure: Derived from Soil texture product. First, layer is
reclassified so that class of interest is 1, other classes are 0. Then processed
with egvtools::input2egv()
with fill gaps = TRUE
performing inverse
distance weighted (power = 2) filling of gaps at the border.
Code
# libs ----
if(!require(terra)) {install.packages("terra"); require(terra)}
if(!require(egvtools)) {remotes::install_github("aavotins/egvtools"); require(egvtools)}
# templates ----
template10=rast("./Templates/TemplateRasters/LV10m_10km.tif")
template100=rast("./Templates/TemplateRasters/LV100m_10km.tif")
# input ----
combtext=rast("./RasterGrids_10m/2024/SoilTXT_combined.tif")
# EGVs cell ----
# SoilTexture_Sand_cell.tif egv_516
sand10=ifel(combtext==1,1,0)
plot(sand10)
input2egv(input=sand10,
egv_template="./Templates/TemplateRasters/LV100m_10km.tif",
summary_function = "average",
missing_job = "FillOutput",
idw_weight = 2,
outlocation = "./RasterGrids_100m/2024/RAW/",
outfilename = "SoilTexture_Sand_cell.tif",
layername="egv_516",
return_visible = TRUE)
6.517 SoilTexture_Sand_r500
filename: SoilTexture_Sand_r500.tif
layername: egv_517
English name: Fractional cover of Sand Soils within the 0.5 km landscape
Latvian name: Augsnes granulometriskās klases “smilts” platības īpatsvars 0,5 km ainavā
Procedure: Derived from SoilTexture_Sand_cell. First processed
with egvtools::radius_function()
, then rewritten to ensure layername. To protect against
possible data loss at edge cells, inverse distance weighted (power = 2) gap filling
is implemented.
Code
# libs ----
if(!require(terra)) {install.packages("terra"); require(terra)}
if(!require(egvtools)) {remotes::install_github("aavotins/egvtools"); require(egvtools)}
# EGVs radii ----
radius_function(
kvadrati_path = "./Templates/TemplateGrids/tiles/",
radii_path = "./Templates/TemplateGridPoints/tiles/",
tikls100_path = "./Templates/TemplateGrids/tikls100_sauzeme.parquet",
template_path = "./Templates/TemplateRasters/LV100m_10km.tif",
input_layers = c("./RasterGrids_100m/2024/RAW/SoilTexture_Sand_cell.tif"),
layer_prefixes = c("SoilTexture_Sand"),
output_dir = "./RasterGrids_100m/2024/RAW/",
n_workers = 5,
radii = c("r500"),
radius_mode = "sparse",
extract_fun = "mean",
fill_missing = TRUE,
IDW_weight = 2,
future_max_size = 5 * 1024^3)
# SoilTexture_Sand_r500.tif egv_517
slanis=rast("./RasterGrids_100m/2024/RAW/SoilTexture_Sand_r500.tif")
names(slanis)="egv_517"
slanis2=project(slanis,template100)
writeRaster(slanis2,
"./RasterGrids_100m/2024/RAW/SoilTexture_Sand_r500.tif",
overwrite=TRUE)
6.518 SoilTexture_Sand_r1250
filename: SoilTexture_Sand_r1250.tif
layername: egv_518
English name: Fractional cover of Sand Soils within the 1.25 km landscape
Latvian name: Augsnes granulometriskās klases “smilts” platības īpatsvars 1,25 km ainavā
Procedure: Derived from SoilTexture_Sand_cell. First processed
with egvtools::radius_function()
, then rewritten to ensure layername. To protect against
possible data loss at edge cells, inverse distance weighted (power = 2) gap filling
is implemented.
Code
# libs ----
if(!require(terra)) {install.packages("terra"); require(terra)}
if(!require(egvtools)) {remotes::install_github("aavotins/egvtools"); require(egvtools)}
# EGVs radii ----
radius_function(
kvadrati_path = "./Templates/TemplateGrids/tiles/",
radii_path = "./Templates/TemplateGridPoints/tiles/",
tikls100_path = "./Templates/TemplateGrids/tikls100_sauzeme.parquet",
template_path = "./Templates/TemplateRasters/LV100m_10km.tif",
input_layers = c("./RasterGrids_100m/2024/RAW/SoilTexture_Sand_cell.tif"),
layer_prefixes = c("SoilTexture_Sand"),
output_dir = "./RasterGrids_100m/2024/RAW/",
n_workers = 5,
radii = c("r1250"),
radius_mode = "sparse",
extract_fun = "mean",
fill_missing = TRUE,
IDW_weight = 2,
future_max_size = 5 * 1024^3)
# SoilTexture_Sand_r1250.tif egv_518
slanis=rast("./RasterGrids_100m/2024/RAW/SoilTexture_Sand_r1250.tif")
names(slanis)="egv_518"
slanis2=project(slanis,template100)
writeRaster(slanis2,
"./RasterGrids_100m/2024/RAW/SoilTexture_Sand_r1250.tif",
overwrite=TRUE)
6.519 SoilTexture_Sand_r3000
filename: SoilTexture_Sand_r3000.tif
layername: egv_519
English name: Fractional cover of Sand Soils within the 3 km landscape
Latvian name: Augsnes granulometriskās klases “smilts” platības īpatsvars 3 km ainavā
Procedure: Derived from SoilTexture_Sand_cell. First processed
with egvtools::radius_function()
, then rewritten to ensure layername. To protect against
possible data loss at edge cells, inverse distance weighted (power = 2) gap filling
is implemented.
Code
# libs ----
if(!require(terra)) {install.packages("terra"); require(terra)}
if(!require(egvtools)) {remotes::install_github("aavotins/egvtools"); require(egvtools)}
# EGVs radii ----
radius_function(
kvadrati_path = "./Templates/TemplateGrids/tiles/",
radii_path = "./Templates/TemplateGridPoints/tiles/",
tikls100_path = "./Templates/TemplateGrids/tikls100_sauzeme.parquet",
template_path = "./Templates/TemplateRasters/LV100m_10km.tif",
input_layers = c("./RasterGrids_100m/2024/RAW/SoilTexture_Sand_cell.tif"),
layer_prefixes = c("SoilTexture_Sand"),
output_dir = "./RasterGrids_100m/2024/RAW/",
n_workers = 5,
radii = c("r3000"),
radius_mode = "sparse",
extract_fun = "mean",
fill_missing = TRUE,
IDW_weight = 2,
future_max_size = 5 * 1024^3)
# SoilTexture_Sand_r3000.tif egv_519
slanis=rast("./RasterGrids_100m/2024/RAW/SoilTexture_Sand_r3000.tif")
names(slanis)="egv_519"
slanis2=project(slanis,template100)
writeRaster(slanis2,
"./RasterGrids_100m/2024/RAW/SoilTexture_Sand_r3000.tif",
overwrite=TRUE)
6.520 SoilTexture_Sand_r10000
filename: SoilTexture_Sand_r10000.tif
layername: egv_520
English name: Fractional cover of Sand Soils within the 10 km landscape
Latvian name: Augsnes granulometriskās klases “smilts” platības īpatsvars 10 km ainavā
Procedure: Derived from SoilTexture_Sand_cell. First processed
with egvtools::radius_function()
, then rewritten to ensure layername. To protect against
possible data loss at edge cells, inverse distance weighted (power = 2) gap filling
is implemented.
Code
# libs ----
if(!require(terra)) {install.packages("terra"); require(terra)}
if(!require(egvtools)) {remotes::install_github("aavotins/egvtools"); require(egvtools)}
# EGVs radii ----
radius_function(
kvadrati_path = "./Templates/TemplateGrids/tiles/",
radii_path = "./Templates/TemplateGridPoints/tiles/",
tikls100_path = "./Templates/TemplateGrids/tikls100_sauzeme.parquet",
template_path = "./Templates/TemplateRasters/LV100m_10km.tif",
input_layers = c("./RasterGrids_100m/2024/RAW/SoilTexture_Sand_cell.tif"),
layer_prefixes = c("SoilTexture_Sand"),
output_dir = "./RasterGrids_100m/2024/RAW/",
n_workers = 5,
radii = c("r10000"),
radius_mode = "sparse",
extract_fun = "mean",
fill_missing = TRUE,
IDW_weight = 2,
future_max_size = 5 * 1024^3)
# SoilTexture_Sand_r10000.tif egv_520
slanis=rast("./RasterGrids_100m/2024/RAW/SoilTexture_Sand_r10000.tif")
names(slanis)="egv_520"
slanis2=project(slanis,template100)
writeRaster(slanis2,
"./RasterGrids_100m/2024/RAW/SoilTexture_Sand_r10000.tif",
overwrite=TRUE)
6.521 SoilTexture_Silt_cell
filename: SoilTexture_Silt_cell.tif
layername: egv_521
English name: Fractional cover of Silt Soils within the analysis cell (1 ha)
Latvian name: Augsnes granulometriskās klases “smilšmāls un mālsmilts” platības īpatsvars analīzes šūnā (1 ha)
Procedure: Derived from Soil texture product. First, layer is
reclassified so that class of interest is 1, other classes are 0. Then processed
with egvtools::input2egv()
with fill gaps = TRUE
performing inverse
distance weighted (power = 2) filling of gaps at the border.
Code
# libs ----
if(!require(terra)) {install.packages("terra"); require(terra)}
if(!require(egvtools)) {remotes::install_github("aavotins/egvtools"); require(egvtools)}
# templates ----
template10=rast("./Templates/TemplateRasters/LV10m_10km.tif")
template100=rast("./Templates/TemplateRasters/LV100m_10km.tif")
# input ----
combtext=rast("./RasterGrids_10m/2024/SoilTXT_combined.tif")
# EGVs cell ----
# SoilTexture_Silt_cell.tif egv_521
silt10=ifel(combtext==2,1,0)
input2egv(input=silt10,
egv_template="./Templates/TemplateRasters/LV100m_10km.tif",
summary_function = "average",
missing_job = "FillOutput",
idw_weight = 2,
outlocation = "./RasterGrids_100m/2024/RAW/",
outfilename = "SoilTexture_Silt_cell.tif",
layername="egv_521",
return_visible = TRUE)
6.522 SoilTexture_Silt_r500
filename: SoilTexture_Silt_r500.tif
layername: egv_522
English name: Fractional cover of Silt Soils within the 0.5 km landscape
Latvian name: Augsnes granulometriskās klases “smilšmāls un mālsmilts” platības īpatsvars 0,5 km ainavā
Procedure: Derived from SoilTexture_Silt_cell. First processed
with egvtools::radius_function()
, then rewritten to ensure layername. To protect against
possible data loss at edge cells, inverse distance weighted (power = 2) gap filling
is implemented.
Code
# libs ----
if(!require(terra)) {install.packages("terra"); require(terra)}
if(!require(egvtools)) {remotes::install_github("aavotins/egvtools"); require(egvtools)}
# EGVs radii ----
radius_function(
kvadrati_path = "./Templates/TemplateGrids/tiles/",
radii_path = "./Templates/TemplateGridPoints/tiles/",
tikls100_path = "./Templates/TemplateGrids/tikls100_sauzeme.parquet",
template_path = "./Templates/TemplateRasters/LV100m_10km.tif",
input_layers = c("./RasterGrids_100m/2024/RAW/SoilTexture_Silt_cell.tif"),
layer_prefixes = c("SoilTexture_Silt"),
output_dir = "./RasterGrids_100m/2024/RAW/",
n_workers = 5,
radii = c("r500"),
radius_mode = "sparse",
extract_fun = "mean",
fill_missing = TRUE,
IDW_weight = 2,
future_max_size = 5 * 1024^3)
# SoilTexture_Silt_r500.tif egv_522
slanis=rast("./RasterGrids_100m/2024/RAW/SoilTexture_Silt_r500.tif")
names(slanis)="egv_522"
slanis2=project(slanis,template100)
writeRaster(slanis2,
"./RasterGrids_100m/2024/RAW/SoilTexture_Silt_r500.tif",
overwrite=TRUE)
6.523 SoilTexture_Silt_r1250
filename: SoilTexture_Silt_r1250.tif
layername: egv_523
English name: Fractional cover of Silt Soils within the 1.25 km landscape
Latvian name: Augsnes granulometriskās klases “smilšmāls un mālsmilts” platības īpatsvars 1,25 km ainavā
Procedure: Derived from SoilTexture_Silt_cell. First processed
with egvtools::radius_function()
, then rewritten to ensure layername. To protect against
possible data loss at edge cells, inverse distance weighted (power = 2) gap filling
is implemented.
Code
# libs ----
if(!require(terra)) {install.packages("terra"); require(terra)}
if(!require(egvtools)) {remotes::install_github("aavotins/egvtools"); require(egvtools)}
# EGVs radii ----
radius_function(
kvadrati_path = "./Templates/TemplateGrids/tiles/",
radii_path = "./Templates/TemplateGridPoints/tiles/",
tikls100_path = "./Templates/TemplateGrids/tikls100_sauzeme.parquet",
template_path = "./Templates/TemplateRasters/LV100m_10km.tif",
input_layers = c("./RasterGrids_100m/2024/RAW/SoilTexture_Silt_cell.tif"),
layer_prefixes = c("SoilTexture_Silt"),
output_dir = "./RasterGrids_100m/2024/RAW/",
n_workers = 5,
radii = c("r1250"),
radius_mode = "sparse",
extract_fun = "mean",
fill_missing = TRUE,
IDW_weight = 2,
future_max_size = 5 * 1024^3)
# SoilTexture_Silt_r1250.tif egv_523
slanis=rast("./RasterGrids_100m/2024/RAW/SoilTexture_Silt_r1250.tif")
names(slanis)="egv_523"
slanis2=project(slanis,template100)
writeRaster(slanis2,
"./RasterGrids_100m/2024/RAW/SoilTexture_Silt_r1250.tif",
overwrite=TRUE)
6.524 SoilTexture_Silt_r3000
filename: SoilTexture_Silt_r3000.tif
layername: egv_524
English name: Fractional cover of Silt Soils within the 3 km landscape
Latvian name: Augsnes granulometriskās klases “smilšmāls un mālsmilts” platības īpatsvars 3 km ainavā
Procedure: Derived from SoilTexture_Silt_cell. First processed
with egvtools::radius_function()
, then rewritten to ensure layername. To protect against
possible data loss at edge cells, inverse distance weighted (power = 2) gap filling
is implemented.
Code
# libs ----
if(!require(terra)) {install.packages("terra"); require(terra)}
if(!require(egvtools)) {remotes::install_github("aavotins/egvtools"); require(egvtools)}
# EGVs radii ----
radius_function(
kvadrati_path = "./Templates/TemplateGrids/tiles/",
radii_path = "./Templates/TemplateGridPoints/tiles/",
tikls100_path = "./Templates/TemplateGrids/tikls100_sauzeme.parquet",
template_path = "./Templates/TemplateRasters/LV100m_10km.tif",
input_layers = c("./RasterGrids_100m/2024/RAW/SoilTexture_Silt_cell.tif"),
layer_prefixes = c("SoilTexture_Silt"),
output_dir = "./RasterGrids_100m/2024/RAW/",
n_workers = 5,
radii = c("r3000"),
radius_mode = "sparse",
extract_fun = "mean",
fill_missing = TRUE,
IDW_weight = 2,
future_max_size = 5 * 1024^3)
# SoilTexture_Silt_r3000.tif egv_524
slanis=rast("./RasterGrids_100m/2024/RAW/SoilTexture_Silt_r3000.tif")
names(slanis)="egv_524"
slanis2=project(slanis,template100)
writeRaster(slanis2,
"./RasterGrids_100m/2024/RAW/SoilTexture_Silt_r3000.tif",
overwrite=TRUE)
6.525 SoilTexture_Silt_r10000
filename: SoilTexture_Silt_r10000.tif
layername: egv_525
English name: Fractional cover of Silt Soils within the 10 km landscape
Latvian name: Augsnes granulometriskās klases “smilšmāls un mālsmilts” platības īpatsvars 10 km ainavā
Procedure: Derived from SoilTexture_Silt_cell. First processed
with egvtools::radius_function()
, then rewritten to ensure layername. To protect against
possible data loss at edge cells, inverse distance weighted (power = 2) gap filling
is implemented.
Code
# libs ----
if(!require(terra)) {install.packages("terra"); require(terra)}
if(!require(egvtools)) {remotes::install_github("aavotins/egvtools"); require(egvtools)}
# EGVs radii ----
radius_function(
kvadrati_path = "./Templates/TemplateGrids/tiles/",
radii_path = "./Templates/TemplateGridPoints/tiles/",
tikls100_path = "./Templates/TemplateGrids/tikls100_sauzeme.parquet",
template_path = "./Templates/TemplateRasters/LV100m_10km.tif",
input_layers = c("./RasterGrids_100m/2024/RAW/SoilTexture_Silt_cell.tif"),
layer_prefixes = c("SoilTexture_Silt"),
output_dir = "./RasterGrids_100m/2024/RAW/",
n_workers = 5,
radii = c("r10000"),
radius_mode = "sparse",
extract_fun = "mean",
fill_missing = TRUE,
IDW_weight = 2,
future_max_size = 5 * 1024^3)
# SoilTexture_Silt_r10000.tif egv_525
slanis=rast("./RasterGrids_100m/2024/RAW/SoilTexture_Silt_r10000.tif")
names(slanis)="egv_525"
slanis2=project(slanis,template100)
writeRaster(slanis2,
"./RasterGrids_100m/2024/RAW/SoilTexture_Silt_r10000.tif",
overwrite=TRUE)
6.526 Terrain_ASL-average_cell
filename: Terrain_ASL-average_cell.tif
layername: egv_526
English name: Average value of height Above Sea Level (m) within the analysis cell (1 ha)
Latvian name: Augstums virs jūras līmeņa (m) analīzes šūnā (1 ha)
Procedure: Derived from Digital elevation/terrain models. Processed
with egvtools::input2egv()
. To protect against
possible data loss at edge cells, inverse distance weighted (power = 2) gap filling
is implemented.
Code
# libs ----
if(!require(terra)) {install.packages("terra"); require(terra)}
if(!require(egvtools)) {remotes::install_github("aavotins/egvtools"); require(egvtools)}
# templates ----
template100=rast("./Templates/TemplateRasters/LV100m_10km.tif")
# Terrain_ASL-average_cell.tif egv_526
input2egv(input="./Geodata/2024/DEM/mozDEM_10m.tif",
egv_template="./Templates/TemplateRasters/LV100m_10km.tif",
summary_function = "average",
missing_job = "FillOutput",
idw_weight = 2,
outlocation = "./RasterGrids_100m/2024/RAW/",
outfilename = "Terrain_ASL-average_cell.tif",
layername="egv_526",
return_visible = TRUE,
plot_final = TRUE)
6.527 Terrain_Aspect-average_cell
filename: Terrain_Aspect-average_cell.tif
layername: egv_527
English name: Average value of Terrain Aspect (degree) within the analysis cell (1 ha)
Latvian name: Nogāzes vidējais vērsuma virziens analīzes šūnā (1 ha)
Procedure: Derived from Terrain products. Processed
with egvtools::input2egv()
. To protect against
possible data loss at edge cells, inverse distance weighted (power = 2) gap filling
is implemented.
Code
# libs ----
if(!require(terra)) {install.packages("terra"); require(terra)}
if(!require(egvtools)) {remotes::install_github("aavotins/egvtools"); require(egvtools)}
# templates ----
template100=rast("./Templates/TemplateRasters/LV100m_10km.tif")
# Terrain_Aspect-average_cell.tif egv_527
input2egv(input="./RasterGrids_10m/2024/Terrain_Aspect_udeni2_10m.tif",
egv_template="./Templates/TemplateRasters/LV100m_10km.tif",
summary_function = "average",
missing_job = "FillOutput",
idw_weight = 2,
outlocation = "./RasterGrids_100m/2024/RAW/",
outfilename = "Terrain_Aspect-average_cell.tif",
layername="egv_527",
return_visible = TRUE,
plot_final = TRUE)
6.528 Terrain_Aspect-iqr_cell
filename: Terrain_Aspect-iqr_cell.tif
layername: egv_528
English name: Variability of Terrain Aspect (degree) within the analysis cell (1 ha)
Latvian name: Nogāzes vērsuma variabilitāte analīzes šūnā (1 ha)
Procedure: Derived from Terrain products. First Q1 and then Q3
is calculated for every cell with egvtools::input2egv()
. Finally, subtracting
Q1 from Q3 and writing final raster with specified layername. To protect against
possible data loss at edge cells, inverse distance weighted (power = 2) gap filling
is implemented.
Code
# libs ----
if(!require(terra)) {install.packages("terra"); require(terra)}
if(!require(egvtools)) {remotes::install_github("aavotins/egvtools"); require(egvtools)}
# templates ----
template100=rast("./Templates/TemplateRasters/LV100m_10km.tif")
# Terrain_Aspect-iqr_cell.tif egv_528
p25rez=input2egv(input="./RasterGrids_10m/2024/Terrain_Aspect_udeni2_10m.tif",
egv_template= "./Templates/TemplateRasters/LV100m_10km.tif",
summary_function = "q1",
missing_job = "FillOutput",
outlocation = "./RasterGrids_100m/2024/",
outfilename = "draza_p25.tif",
layername = "egv_528",
idw_weight = 2)
p25rez_r=rast("./RasterGrids_100m/2024/draza_p25.tif")
p75rez=input2egv(input="./RasterGrids_10m/2024/Terrain_Aspect_udeni2_10m.tif",
egv_template= "./Templates/TemplateRasters/LV100m_10km.tif",
summary_function = "q3",
missing_job = "FillOutput",
outlocation = "./RasterGrids_100m/2024/",
outfilename = "draza_p75.tif",
layername = "egv_528",
idw_weight = 2)
p75rez_r=rast("./RasterGrids_100m/2024/draza_p75.tif")
iqr_rez=p75rez_r-p25rez_r
iqr_rez
plot(iqr_rez)
writeRaster(iqr_rez,
"./RasterGrids_100m/2024/RAW/Terrain_Aspect-iqr_cell.tif",
overwrite=TRUE)
unlink("./RasterGrids_100m/2024/draza_p75.tif")
unlink("./RasterGrids_100m/2024/draza_p25.tif")
6.529 Terrain_DiS-area_cell
filename: Terrain_DiS-area_cell.tif
layername: egv_529
English name: Fractional cover of Terrain Sinks within the analysis cell (1 ha)
Latvian name: Reljefa depresiju bez virszemes noteces platības īpatsvars analīzes šūnā (1 ha)
Procedure: Derived from Terrain products. Processed
with egvtools::input2egv()
. To protect against
possible data loss at edge cells, inverse distance weighted (power = 2) gap filling
is implemented.
Code
# libs ----
if(!require(terra)) {install.packages("terra"); require(terra)}
if(!require(egvtools)) {remotes::install_github("aavotins/egvtools"); require(egvtools)}
# templates ----
template100=rast("./Templates/TemplateRasters/LV100m_10km.tif")
# Terrain_DiS-area_cell.tif egv_529
dis=rast("./RasterGrids_10m/2024/Terrain_DiS_udeni2_10m.tif")
dis2=ifel(dis>0,1,dis)
input2egv(input=dis2,
egv_template="./Templates/TemplateRasters/LV100m_10km.tif",
summary_function = "average",
missing_job = "FillOutput",
idw_weight = 2,
outlocation = "./RasterGrids_100m/2024/RAW/",
outfilename = "Terrain_DiS-area_cell.tif",
layername="egv_529",
return_visible = TRUE,
plot_final = TRUE)
6.530 Terrain_DiS-area_r500
filename: Terrain_DiS-area_r500.tif
layername: egv_530
English name: Fractional cover of Terrain Sinks within the 0.5 km landscape
Latvian name: Reljefa depresiju bez virszemes noteces platības īpatsvars 0,5 km ainavā
Procedure: Derived from Terrain products. Processed
with egvtools::radius_function()
. To protect against
possible data loss at edge cells, inverse distance weighted (power = 2) gap filling
is implemented. After zonal statistics, file is rewritten to ensure layername.
Code
# libs ----
if(!require(terra)) {install.packages("terra"); require(terra)}
if(!require(egvtools)) {remotes::install_github("aavotins/egvtools"); require(egvtools)}
# templates ----
template100=rast("./Templates/TemplateRasters/LV100m_10km.tif")
# radii
radius_function(
kvadrati_path = "./Templates/TemplateGrids/tiles/",
radii_path = "./Templates/TemplateGridPoints/tiles/",
tikls100_path = "./Templates/TemplateGrids/tikls100_sauzeme.parquet",
template_path = "./Templates/TemplateRasters/LV100m_10km.tif",
input_layers = c("./RasterGrids_100m/2024/RAW/Terrain_DiS-area_cell.tif"),
layer_prefixes = c("Terrain_DiS-area"),
output_dir = "./RasterGrids_100m/2024/RAW/",
n_workers = 5,
radii = c("r500"),
radius_mode = "sparse",
extract_fun = "mean",
fill_missing = TRUE,
IDW_weight = 2,
future_max_size = 5 * 1024^3)
# Terrain_DiS-area_r500.tif egv_530
slanis=rast("./RasterGrids_100m/2024/RAW/Terrain_DiS-area_r500.tif")
names(slanis)="egv_530"
slanis2=project(slanis,template100)
writeRaster(slanis2,
"./RasterGrids_100m/2024/RAW/Terrain_DiS-area_r500.tif",
overwrite=TRUE)
6.531 Terrain_DiS-area_r1250
filename: Terrain_DiS-area_r1250.tif
layername: egv_531
English name: Fractional cover of Terrain Sinks within the 1.25 km landscape
Latvian name: Reljefa depresiju bez virszemes noteces platības īpatsvars 1,25 km ainavā
Procedure: Derived from Terrain products. Processed
with egvtools::radius_function()
. To protect against
possible data loss at edge cells, inverse distance weighted (power = 2) gap filling
is implemented. After zonal statistics, file is rewritten to ensure layername.
Code
# libs ----
if(!require(terra)) {install.packages("terra"); require(terra)}
if(!require(egvtools)) {remotes::install_github("aavotins/egvtools"); require(egvtools)}
# templates ----
template100=rast("./Templates/TemplateRasters/LV100m_10km.tif")
# radii
radius_function(
kvadrati_path = "./Templates/TemplateGrids/tiles/",
radii_path = "./Templates/TemplateGridPoints/tiles/",
tikls100_path = "./Templates/TemplateGrids/tikls100_sauzeme.parquet",
template_path = "./Templates/TemplateRasters/LV100m_10km.tif",
input_layers = c("./RasterGrids_100m/2024/RAW/Terrain_DiS-area_cell.tif"),
layer_prefixes = c("Terrain_DiS-area"),
output_dir = "./RasterGrids_100m/2024/RAW/",
n_workers = 5,
radii = c("r1250"),
radius_mode = "sparse",
extract_fun = "mean",
fill_missing = TRUE,
IDW_weight = 2,
future_max_size = 5 * 1024^3)
# Terrain_DiS-area_r1250.tif egv_531
slanis=rast("./RasterGrids_100m/2024/RAW/Terrain_DiS-area_r1250.tif")
names(slanis)="egv_531"
slanis2=project(slanis,template100)
writeRaster(slanis2,
"./RasterGrids_100m/2024/RAW/Terrain_DiS-area_r1250.tif",
overwrite=TRUE)
6.532 Terrain_DiS-area_r3000
filename: Terrain_DiS-area_r3000.tif
layername: egv_532
English name: Fractional cover of Terrain Sinks within the 3 km landscape
Latvian name: Reljefa depresiju bez virszemes noteces platības īpatsvars 3 km ainavā
Procedure: Derived from Terrain products. Processed
with egvtools::radius_function()
. To protect against
possible data loss at edge cells, inverse distance weighted (power = 2) gap filling
is implemented. After zonal statistics, file is rewritten to ensure layername.
Code
# libs ----
if(!require(terra)) {install.packages("terra"); require(terra)}
if(!require(egvtools)) {remotes::install_github("aavotins/egvtools"); require(egvtools)}
# templates ----
template100=rast("./Templates/TemplateRasters/LV100m_10km.tif")
# radii
radius_function(
kvadrati_path = "./Templates/TemplateGrids/tiles/",
radii_path = "./Templates/TemplateGridPoints/tiles/",
tikls100_path = "./Templates/TemplateGrids/tikls100_sauzeme.parquet",
template_path = "./Templates/TemplateRasters/LV100m_10km.tif",
input_layers = c("./RasterGrids_100m/2024/RAW/Terrain_DiS-area_cell.tif"),
layer_prefixes = c("Terrain_DiS-area"),
output_dir = "./RasterGrids_100m/2024/RAW/",
n_workers = 5,
radii = c("r3000"),
radius_mode = "sparse",
extract_fun = "mean",
fill_missing = TRUE,
IDW_weight = 2,
future_max_size = 5 * 1024^3)
# Terrain_DiS-area_r3000.tif egv_532
slanis=rast("./RasterGrids_100m/2024/RAW/Terrain_DiS-area_r3000.tif")
names(slanis)="egv_532"
slanis2=project(slanis,template100)
writeRaster(slanis2,
"./RasterGrids_100m/2024/RAW/Terrain_DiS-area_r3000.tif",
overwrite=TRUE)
6.533 Terrain_DiS-area_r10000
filename: Terrain_DiS-area_r10000.tif
layername: egv_533
English name: Fractional cover of Terrain Sinks within the 10 km landscape
Latvian name: Reljefa depresiju bez virszemes noteces platības īpatsvars 10 km ainavā
Procedure: Derived from Terrain products. Processed
with egvtools::radius_function()
. To protect against
possible data loss at edge cells, inverse distance weighted (power = 2) gap filling
is implemented. After zonal statistics, file is rewritten to ensure layername.
Code
# libs ----
if(!require(terra)) {install.packages("terra"); require(terra)}
if(!require(egvtools)) {remotes::install_github("aavotins/egvtools"); require(egvtools)}
# templates ----
template100=rast("./Templates/TemplateRasters/LV100m_10km.tif")
# radii
radius_function(
kvadrati_path = "./Templates/TemplateGrids/tiles/",
radii_path = "./Templates/TemplateGridPoints/tiles/",
tikls100_path = "./Templates/TemplateGrids/tikls100_sauzeme.parquet",
template_path = "./Templates/TemplateRasters/LV100m_10km.tif",
input_layers = c("./RasterGrids_100m/2024/RAW/Terrain_DiS-area_cell.tif"),
layer_prefixes = c("Terrain_DiS-area"),
output_dir = "./RasterGrids_100m/2024/RAW/",
n_workers = 5,
radii = c("r10000"),
radius_mode = "sparse",
extract_fun = "mean",
fill_missing = TRUE,
IDW_weight = 2,
future_max_size = 5 * 1024^3)
# Terrain_DiS-area_r10000.tif egv_533
slanis=rast("./RasterGrids_100m/2024/RAW/Terrain_DiS-area_r10000.tif")
names(slanis)="egv_533"
slanis2=project(slanis,template100)
writeRaster(slanis2,
"./RasterGrids_100m/2024/RAW/Terrain_DiS-area_r10000.tif",
overwrite=TRUE)
6.534 Terrain_DiS-max_cell
filename: Terrain_DiS-max_cell.tif
layername: egv_534
English name: Maximum Depth in Terrain Sink within the analysis cell (1 ha)
Latvian name: Reljefa depresiju lielākais dziļums analīzes šūnā (1 ha)
Procedure: Derived from Terrain products. Processed
with egvtools::input2egv()
. To protect against
possible data loss at edge cells, inverse distance weighted (power = 2) gap filling
is implemented.
Code
# libs ----
if(!require(terra)) {install.packages("terra"); require(terra)}
if(!require(egvtools)) {remotes::install_github("aavotins/egvtools"); require(egvtools)}
# templates ----
template100=rast("./Templates/TemplateRasters/LV100m_10km.tif")
# Terrain_DiS-max_cell.tif egv_534
input2egv(input="./RasterGrids_10m/2024/Terrain_DiS_udeni2_10m.tif",
egv_template="./Templates/TemplateRasters/LV100m_10km.tif",
summary_function = "max",
missing_job = "FillOutput",
idw_weight = 2,
outlocation = "./RasterGrids_100m/2024/RAW/",
outfilename = "Terrain_DiS-max_cell.tif",
layername="egv_534",
return_visible = TRUE,
plot_final = TRUE)
6.535 Terrain_DiS-mean_cell
filename: Terrain_DiS-mean_cell.tif
layername: egv_535
English name: Average Depth in Terrain Sink within the analysis cell (1 ha)
Latvian name: Reljefa depresiju vidējais dziļums analīzes šūnā (1 ha)
Procedure: Derived from Terrain products. Processed
with egvtools::input2egv()
. To protect against
possible data loss at edge cells, inverse distance weighted (power = 2) gap filling
is implemented.
Code
# libs ----
if(!require(terra)) {install.packages("terra"); require(terra)}
if(!require(egvtools)) {remotes::install_github("aavotins/egvtools"); require(egvtools)}
# templates ----
template100=rast("./Templates/TemplateRasters/LV100m_10km.tif")
# Terrain_DiS-mean_cell.tif egv_535
input2egv(input="./RasterGrids_10m/2024/Terrain_DiS_udeni2_10m.tif",
egv_template="./Templates/TemplateRasters/LV100m_10km.tif",
summary_function = "average",
missing_job = "FillOutput",
idw_weight = 2,
outlocation = "./RasterGrids_100m/2024/RAW/",
outfilename = "Terrain_DiS-mean_cell.tif",
layername="egv_535",
return_visible = TRUE,
plot_final = TRUE)
6.536 Terrain_Slope-average_cell
filename: Terrain_Slope-average_cell.tif
layername: egv_536
English name: Average value of Terrain Slope (degree) within the analysis cell (1 ha)
Latvian name: Nogāzes slīpuma vidējā vērtība analīzes šūnā (1 ha)
Procedure: Derived from Terrain products. Processed
with egvtools::input2egv()
. To protect against
possible data loss at edge cells, inverse distance weighted (power = 2) gap filling
is implemented.
Code
# libs ----
if(!require(terra)) {install.packages("terra"); require(terra)}
if(!require(egvtools)) {remotes::install_github("aavotins/egvtools"); require(egvtools)}
# templates ----
template100=rast("./Templates/TemplateRasters/LV100m_10km.tif")
# Terrain_Slope-average_cell.tif egv_536
input2egv(input="./RasterGrids_10m/2024/Terrain_Slope_udeni2_10m.tif",
egv_template="./Templates/TemplateRasters/LV100m_10km.tif",
summary_function = "average",
missing_job = "FillOutput",
idw_weight = 2,
outlocation = "./RasterGrids_100m/2024/RAW/",
outfilename = "Terrain_Slope-average_cell.tif",
layername="egv_536",
return_visible = TRUE,
plot_final = TRUE)
6.537 Terrain_Slope-iqr_cell
filename: Terrain_Slope-iqr_cell.tif
layername: egv_537
English name: Variability of Terrain Slope (degree) within the analysis cell (1 ha)
Latvian name: Nogāzes slīpuma variabilitāte analīzes šūnā (1 ha)
Procedure: Derived from Terrain products. First Q1 and then Q3
is calculated for every cell with egvtools::input2egv()
. Finally, subtracting
Q1 from Q3 and writing final raster with specified layername. To protect against
possible data loss at edge cells, inverse distance weighted (power = 2) gap filling
is implemented.
Code
# libs ----
if(!require(terra)) {install.packages("terra"); require(terra)}
if(!require(egvtools)) {remotes::install_github("aavotins/egvtools"); require(egvtools)}
# templates ----
template100=rast("./Templates/TemplateRasters/LV100m_10km.tif")
# Terrain_Slope-iqr_cell.tif egv_537
p25rez=input2egv(input="./RasterGrids_10m/2024/Terrain_Slope_udeni2_10m.tif",
egv_template= "./Templates/TemplateRasters/LV100m_10km.tif",
summary_function = "q1",
missing_job = "FillOutput",
outlocation = "./RasterGrids_100m/2024/",
outfilename = "draza_p25.tif",
layername = "egv_537",
idw_weight = 2)
p25rez_r=rast("./RasterGrids_100m/2024/draza_p25.tif")
p75rez=input2egv(input="./RasterGrids_10m/2024/Terrain_Slope_udeni2_10m.tif",
egv_template= "./Templates/TemplateRasters/LV100m_10km.tif",
summary_function = "q3",
missing_job = "FillOutput",
outlocation = "./RasterGrids_100m/2024/",
outfilename = "draza_p75.tif",
layername = "egv_537",
idw_weight = 2)
p75rez_r=rast("./RasterGrids_100m/2024/draza_p75.tif")
iqr_rez=p75rez_r-p25rez_r
iqr_rez
plot(iqr_rez)
writeRaster(iqr_rez,
"./RasterGrids_100m/2024/RAW/Terrain_Slope-iqr_cell.tif",
overwrite=TRUE)
unlink("./RasterGrids_100m/2024/draza_p75.tif")
unlink("./RasterGrids_100m/2024/draza_p25.tif")
6.538 Terrain_TWI-average_cell
filename: Terrain_TWI-average_cell.tif
layername: egv_538
English name: Average value of Topographic Wetness Index (TWI) within the analysis cell (1 ha)
Latvian name: Topogrāfiskā mitruma indeksa vidējā vērtība analīzes šūnā (1 ha)
Procedure: Derived from Terrain products. Processed
with egvtools::input2egv()
. To protect against
possible data loss at edge cells, inverse distance weighted (power = 2) gap filling
is implemented.
Code
# libs ----
if(!require(terra)) {install.packages("terra"); require(terra)}
if(!require(egvtools)) {remotes::install_github("aavotins/egvtools"); require(egvtools)}
# templates ----
template100=rast("./Templates/TemplateRasters/LV100m_10km.tif")
# Terrain_TWI-average_cell.tif egv_538
input2egv(input="./RasterGrids_10m/2024/Terrain_TWI_udeni2_10m.tif",
egv_template="./Templates/TemplateRasters/LV100m_10km.tif",
summary_function = "average",
missing_job = "FillOutput",
idw_weight = 2,
outlocation = "./RasterGrids_100m/2024/RAW/",
outfilename = "Terrain_TWI-average_cell.tif",
layername="egv_538",
return_visible = TRUE,
plot_final = TRUE)